

われわれができることと抱えて いる課題

主な技術開発

われわれができること

- 1mサイズ
- 軸外し非球面鏡
- 凹面
- R<10m を製作できる。

そのために以下を開発した 干渉計 制振装置 研削盤 支持ジグ 加工条件

-1000-+1000 nm 研削+フラッシュ研磨後

-100-+100 nm 修正研磨後

・縁以外は仕様を達成

赤線は許容誤差。青線は左図にあるセグメントの形状誤差 黒線は大気と回折限界から決まる構造関数。

誤差ゼロのPSF

高速化

分割鏡制御開発 位相カメラ

チューナブルレーザ

波長スキャン(理論)

段さ30umの時の波長スキャン

項目	位相カメラ仕様	到達値
測定点数	18	
センサ分解能	12 nm	12 nm
センサ絶対精度	100 nm	_
測定レンジ	1 mm	10 um
センサ応答速度	< 60 sec	_

システムの模式図

分割鏡制御開発 ギャップセンサ

項目	仕様	達成値					
分解能(RMS)	< 10 nm	10 nm					
安定性(P-V)	50 nm/10h	30 nm/50h					
リニアリティ	> 90%	> 90%					
サンプルレート	> 10 Hz	6Hz					
測長レンジ	TBD	0.5 mm					
温度変化	< 0.1°C/min	(0.1°C/min)					
湿度変化	< 1 %/min						
51440 51430 51420 51420							

-1

-2

-3

0

10 15 20

20°**C**

25

5度の温度変化時のセンサの値

30 35 40 45 50

15

10

51410

51400

51390

51380

5 10 15 20

0

日本システム開発製DS2001

BQ nm

10

750

40 45

50時間

補償後のセンサの安定性

支持機構とアクチュエータ

RMS = 30 nm, P-V = 156 nm

支持機構とアクチュエータ

項目	仕様	達成値
分解能(RMS nm)	< 15	15
リニアリティ (%)	> 90	90
帯域 (Hz)	> 2 Hz	20
ストローク	> 1 mm	1.3 mm

- ロストモーション10 nm
- 機械再現性 100 nm

分割鏡制御開発 アルゴリズム

センサ(青)、鏡、アクチュエータ(赤矢印) の模式図

鏡の段差と曲率誤差の結像性能への影響FWHM (ミリ秒角)

鏡の段差	鏡の曲率誤差(um)					
(nm)	0	± 50				
0	41	59				
± 50	63	78				

鏡の位置の結像性能への影響

<u>FWHM(ミリ秒角)</u>

誤差 (mmまたは度)	Х	Y	Z
0.01	6.4	12.3	20.2
0.05	6.4	15.4	63.4

最適なセンサの配置 丸印がセンサ

項目	許容誤差	到達値
曲率誤差	±50 um	±40 um
センサとアクチュエータ分解能	±50 nm	± 30 nm
鏡位置誤差	0.05 mm	P-V = 0.037 mm
鏡の回転誤差	0.05 度	P-V < 0.01 度

架台

- ・ 従来の1/5程度の質量
 鏡筒重量8トン(うち構造物:4トン)
- 54個の主鏡支持点での相対 変形<100 μm

レーザートラッカ 名古屋大学所有

- 高速駆動
- 低熱容量
- 低熱慣性
- 低風抵抗

抱えている課題

開発		主鏡計測	主鏡	副鏡+第三鏡計測	副鏡+第三鏡	波画カンヤ	存枯 オン キ	エッジセンセ	支持機構	アクチュエータ	御	アルゴリズム	鏡筒	高度軸	方位軸	オード
	調査·仕様															
3	概念設計															
	要素検証															
	初期設計															
	PDR															
0010	詳細設計															
2013	実機製作															

副鏡計測

- 1mサイズ
- 凸面鏡
- 非球面

- 計測さえできれば製作できる
- ・機上計測を狙う

Swing-arm profilometer

スイングアーム

被検面φ1.4m

Fig. 2. SOC in situ measuring a 1.4-m convex off-axis parabolic mirror. Polishing head in back.

計測パス

Fig. 3. SOC profiling pattern used for measuring the 1.4m convex asphere, coordinates units are mm

フィゾー RMS=35.7 nm

最大の非球面 300 um 傾き、曲率、コマ、非点収差、Trefoilは除去

現状

- 再現性: RMS = 10 nm
- サンプルレート: 50 Hz
- 計測サイズ:~1m

観測装置

名称	可視高速測 光 分光器	高コントラスト 惑星カメラ	可視面分光器	近赤外 面分光器	可視高分散分光器	可視近赤外広視 野撮像
サイエン ス	突発天体現 象	系外惑星	突発天体現象	突発天体現象 QSO の形成・進化	スーパーフレア星 系外惑星	系外惑星トラン ジット
視野	2'□	10"□	10"□	7"Ф	1".5Ф	12'□
観測波長	0.4-1.0μm	0.95-1.80µm	0.57-0.85µmlま か	0.8-2.4µm	0.39-0.87µm	0.5-2.4
波長分解 能	200		600-800ほか	3000-5000	30000-50000	
空間分解 能	0".24	0".066(@1.26μ m)	1"	1"	0".5	
備考	32フレーム/ 秒の高速露 出	AO+ヌル干渉 計による高精 度コロナグラフ +波面測定装 置	分光器は既存 のものを使用 (ここでは KOOLSを想定)	2天体同時面分光 検討中	スペクトル参照星との 同時分光検討中	高精度測光
状況	現有	開発中	開発中	申請中	申請中	申請中