新しい回折格子 Novel gratings

海老塚 昇¹, 堀 勝¹, 佐々木 実², 平原 靖大³, Andrea Bianco⁴, Filippo Maria Zerbi⁴, 青木 和光⁵

1名古屋大学 プラズマナノ工学研究センター, 2典四工業大学 工学部 3名古屋大学 環境学院

2豊田工業大学工学部,3名古屋大学環境学研究科,

⁴INAF Osservatorio Astronomico di Brera, Italy,

5国立天文台 光赤外研究部

第二回可視赤外線観測装置技術ワークショップ

2012年12月17,18日

Volume Phase Holographic

M 82 (NGC 3034)

FOCAS (B, V, Hα)

Subaru Telescope, National Astronomical Observatory of Japan Copyright© 2000 National Astronomical Observatory of Japan, all rights reserved

Efficiencies of gratings

Surface relief grating: Efficiency decreases steeply below $4 \Lambda/\lambda$.

VPH (Volume Phase Holographic) grating ($\Delta n \sim 0.02$): Efficiency achieves up to 100% below 4 Λ/λ .

(Oka et. al., SPIE, **5005**, 2003)

Grisms for FOCAS

Size: $110 \times 106 \times 106$ (max).

4 SR grisms: 300 < R < 1,400.

1 Echelle grism: *R*~**2,500.**

8 VPH grisms (3 grisms with

ZnSe prisms): 1,600 < R < 7,000,

Developed by in collaboration with Japan Wemen's Univ.,

NAOJ and RIKEN.

(Ebizuka et. al. PASJ, **63**, 2011a)

Relative efficiencies of grisms within Subaru Telescope and FOCAS

New VPH grisms for FOCAS

Limitations of VPH grating

Band width of VPH grating becomes narrow in diffraction angle: α increase because semi-amplitude of index modulation of dichromated gelatin (DCG) is $\Delta n < 0.15$.

(Baldry et al., PASP, **116**, 2004)

Diffraction efficiency of VPH grating decrease toward higher orders.

(Oka et. al., SPIE, **5290**, 2004)

Polarized diffraction efficiency of VPH grating

$$\eta_{\rm S} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min})t}{\Lambda (n_{\rm max} + n_{\rm min}) \sin \theta} \right\} \qquad \eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm ma$$

1.10

$$\eta_{\rm P} = \sin^2 \left\{ \frac{\pi (n_{\rm max} - n_{\rm min}) t \cos 2\theta}{\Lambda (n_{\rm max} + n_{\rm min}) \sin 2\theta} \right\}$$

Measured polarized diffraction efficiencies of VPH grating.

1.00

p-polarization

1.05

$$n_{\text{ave}} = (n_{\text{max}} - n_{\text{min}})/2 = 1.53,$$

 $\Lambda = 0.984 \ \mu\text{m}, \ t = 20 \ \mu\text{m},$
 $\theta = 19.8^{\circ} \ @ 1.02 \ \mu\text{m}.$

w/o polarizer

0.95

20

0.90

Calculated polarization diffraction efficiencies vs. t of a VPH grating.

$$\Delta n = (n_{\text{max}} - n_{\text{min}})/2 = 0.017$$

(Ebizuka et. al. PASJ, **63**, 2011b)

IC 434 (Horse-head Nebula)

Ultra-high-sensitivity HDTV I.I. color camera (NHK) Exp. 22 sec. (11 frames coadded) January 16, 1999

Subaru Telescope, National Astronomical Observatory of Japan

Copyright © 1999, National Astronomical Observatory of Japan, all rights reserved

Volume binary grating

• $\Delta n = (n_{\text{max}} - n_{\text{min}})/2 \sim 0.5$. •Polarized diffraction efficiencies of S and P polarization coincide with each other by tuning of fand t. While aspect ratio becomes $t: w = 1:20 \sim 100$.

Fig. 1. Scanning electron micrograph of grating lines etched into quartz substrate $(n_s = 1.46)$.

(Gerritsen, Jepsen: Appl. Opt., **37**,1998)

Filling factor: $f=w/\Lambda$

Fig. 5. (a) First-order diffraction efficiencies for a grating with $\lambda=0.55~\mu m,~\Lambda=0.2889~\mu m,~\theta_B=45^\circ,~n=1.50,~{\rm and}~f=0.50.$ (b) First-order diffraction efficiencies for a grating with $\lambda=0.55~\mu m,~\Lambda=0.3889~\mu m,~\theta_B=45^\circ,~n=1.50,~{\rm and}~f=0.80.$

(Gupt & Peng, Appl. Opt., 32, 1993)

Volume binary grating for higher diffraction orders

 λ = 0.55 µm, α = 20.44° (= 41.3° in air), nH = 1.89, nL = 1.46, d = 10 µm Configuration 1: ratio 9:1, d = 11 µm, Δn = 0.19

 $n_{\rm H}^{\Delta n}$ =1.89, $n_{\rm L}$ =1.46, α =41.3°, f = 0.1

t:w = 1:22

(Bianco & Ebizuka, SPIE, **8450**, 2012)

D-RIE (Deep Reactive Ion Etching)

DENSO

ICP Etcher
Inductively Coupled Plasma

G sensor of capacitance type

© DENSO CORPORATION All rights reserved.

Filling dielectric → Volume binary grating, Oblique etching → Novel immersion grating for vis. – NIR.

Birefringence Volume Grating

M 82 (NGC 3034)

FOCAS (B, V, H α)

Subaru Telescope, National Astronomical Observatory of Japan

March 24, 2000

Polarized diffraction efficiency of VPH grating

Measured polarized diffraction efficiencies of a prototype VPH grating for a MOIRCS grism.

Average refractive index: n=1.53, grating period: Λ =0.984 mm and thickness: t = 20 μ m. Bragg angle: θ =19.8 degree at λ =1.02 μ m.

Calculated polarization diffraction efficiencies versus t of a VPH grating with refractive index modulation: $\Delta n=0.017$.

(Ebizuka et. al. PASJ, **63**, 2011b)

Birefringence VPH grating

$$\frac{n_{S\max} - n_{S\min}}{\left(n_{S\max} + n_{S\min}\right) \sin 2\theta_S} = \frac{\left(n_{P\max} - n_{P\min}\right) \cos 2\theta_P}{\left(n_{P\max} + n_{P\min}\right) \sin 2\theta_P}$$

$$\frac{n_{S\max} - n_{S\min}}{\left(n_{S\max} + n_{S\min}\right) \cdot 2\sin\theta_S \cos\theta_S} = \frac{\left(n_{P\max} - n_{P\min}\right)\cos 2\theta_P}{\left(n_{P\max} + n_{P\min}\right) \cdot 2\sin\theta_P \cos\theta_P}$$

$$\frac{n_{S\max} - n_{S\min}}{\cos \theta_S} \cong \frac{(n_{P\max} - n_{P\min})\cos 2\theta_P}{\cos \theta_P}$$

$$\frac{100}{80}$$
P-polarization
Average
S-polarization
Thickness [µm]

Calculated polarization diffraction efficiencies versus grating thickness *t* of birefringence VPH grating.

Birefringence binary Bragg (3B) grating

Polarized Diffraction Efficiency of VPH and 3B Grating

Dicson's VPH grating (Polarizer) calculated by Kogelnik method. $n_L = 1.46$, $n_H = 1.54$, $\theta_B = 48.5^{\circ}$.

3B grating calculated by RCWA. n_L =1.46, n_s = 1.544, n_p = 1.60, θ_B =45°.

 $w:t = 1:20 \sim 100 \rightarrow 1:4 \sim 20$

(Ebizuka et. al. SPIE 8450, 2012)

Immersion Grating

Orion Nebula

CISCO (J, K' & H₂ (v=1-0 S(1))

Subaru Telescope, National Astronomical Observatory of Japan

January 28, 1999

Star-forming Region S106 IRS4

CISCO (J, H, K')

Subaru Telescope, National Astronomical Observatory of Japan

February 13, 2001

Copyright© 2001 National Astronomical Observatory of Japan, all rights reserved

Ge immersion grating for GIGMICS

GIGMICS

R~ 50,000@10μm, developed by Hirahara lab., Nagoya Univ.

(Hirahara et. al., SPIE, **7735**, 2010)

First Light Observation of GIGMICS

KANATA 1.5m telescope, Higashi-Hiroshima Observatory, Space Science Center Hiroshima Univ., Dec. 2010~Apr. 2011.

Targets: Vib.-rot. Transitions of Methane, Ethane, Ammonia, N₂O, O₃, SO₂, H₂O, CO₂, SO₂, H₂S, NOx, Halogen Oxides, etc.,in the Planets, Stellar Atmosphere, bright SFRs, CSE of late type stars, and the upper atmosphere of the Earth. (Hirahara et. al., SPIE, **8446**, 2012)

Reference: Earth's atmosphere

First rcientific result (1): Venus

Diffraction Order for the Ge Immersion Grating

Absorption lines cannot be identified to the "telluric lines". \rightarrow CO₂ hot-band & isotopes from Venus.

First scientific results (2): NGC7027

Diffraction Order for the Ge Immersion Grating

Detection of [S IV] ionic fine-structure emission line toward the planetary nebula.

Trial fabrications of Ge immersion grating for R~200,000

 $R \sim 200,000@10\mu m \rightarrow Size: 120 x 120 x 270 mm$

→ Fabrication time: several 1,000 hours

Novel immersion grating

© DISCO

- Machining of dicing saw makes smooth surface
- Easy tooling.
- Fabrication time for grating with 120 x 120 x 270 mm → Several 100 hours?

(Ebizuka et. al. SPIE, **6273**, 2006)

Fabrication method of novel immersion grating for visible and near IR

(Ebizuka et. al. SPIE 8450, 2012)

Conclusions

- A VPH grating achieves high dispersion and high efficiency, as well as versatile for moderate dispersion.
- A volume binary grating achieves wide bandwidth with high efficiency and utilizes for an echelle spectrograph.
- A volume birefringence gratings achieve high efficiency up to 100% for non polarized light.
- A novel immersion grating achieves smaller scattering loss and able to reduce fabrication cost.
- Deep reactive ion etching (D-RIE) is promising methods of fabrications for these high dispersion gratings.