太陽観測に向けた補償光学

三浦則明(北見工大)

- 内容:
- 1. 現システムの詳細
- 2. 観測結果
- 3. 現システムの性能、位置づけ
- 4. 問題点と課題
 - (1) 画像後処理法の開発
 - (2) AOグレードアップ
 - (3) 多層共役化へ向けて

光赤外観測装置2012.12.18(三鷹)

はじめに ドームレス太陽望遠鏡

はじめに 太陽AOの特徴

a. 非常に明るい

高速カメラの使用、多数の光学素子、波面分割が可能

← 費用、設計自由度の面で楽

b. 特徴的な構造が全面に分布している

太陽面上任意の場所でセンシング可能

← レーザ参照星のような参照光源不要

- c. 大きく広がった物体である
 - ・波面センシングの計算量が大きい
 - ・補償が有効な範囲(可視で10秒角未満)を超える
 - ← 周辺部での像のボケや、全体の像のゆがみなどを 補正するmulti-conjugate AOの開発が必要

d. シーイングが良くない

フリードパラメータ小、変動が速い、紫外域でも使用
く高性能なAOが必要となる

-入射光をシステムに導入、補償を行った後、元の光路に戻す - 波面補償とTip-tilt補償を行う二つの独立したclosed-loopユニット

AO用素子

Devices	Specifications	Manufacturers
Deformable mirror	97 electromagnetic actuators, orthogonal array, 13.5mm clear aperture, continuous facesheet	ALPAO (France)
Tip-tilt mirror	Two-axis mount, 2 piezo-actuators	Piezosystem jena (German)
Microlens array	10x10 orthogonal array, f=70mm, 56 subapertures used	Nalux (Japan)
WF-camera	4000 fps (512x256 pix), 2000 fps (512x512), 10μm pixel size, CMOS	Photron (Japan)
TT-camera	2080 fps (1280x256 pix), 520 fps (1280x1024), 12μm pixel size, CMOS	IDT(USA)

波面センサー

- Shack-Hartmann 型、10x10マイクロレンズ
- 望遠鏡開口でのサンプリング6cm
- サブアパーチャの視野 14.3"x14.3".
- 絶対差和または相互相関法
- ゼルニケまたはKLの20項を使用

太陽像からの波面計測

対象像

 $d(a,b) = \sum_{i=1}^{N} \sum_{j=1}^{N} |i(x-a, y-b) - r(x, y)|$ x=1y=1

絶対差和 または相関を用いる

60fpsで撮影 波長450±40nm

	1	4	4 4	聖法生意	是生气堂	化化 医	
		1	2	聖法法	是生气	九 化 聖	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				100	100	10	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				per l	aff	dif	
10 10 10 10							
				af.	de la	đ	
10 10 10 10				41	40	40	
1000	100	100	40	ar		-45	
10 21 21 2	1	at the	ait	d	a	120	
100 100 - 20	64	ai	-	ait			

電磁型可変形鏡

- 97 actuators
- 13.5mm clear aperture
- Push & pull control
- 50 µm maximum stroke
- No hysteresis
- Response time: 0.8 ms

2. 太陽観測結果

Filter: $\lambda = 430$ nm and $\Delta \lambda = 2$ nm Control frequency: 910 Hz WF sensor: 10x10-MLA 4000-fps CMOS DM actuators: 97 KL polynomials: 21 Sensing: Normalized cross-correlation Date: September 10, 2011 Time: 02:31:48 UT FOV: 51.8x51.8 arcsec² Sensing target : Granules at the center Acquisition: 28 Hz, 300 frames Exposure: 0.29 ms AO ON→OFF FOV: 13.8x13.8 arcsec²

130枚の平均像= 4.64 秒露光 Without AO (TT only)

With AO

AO-OFF分解能=1.5秒角程度 →r0 = 5.8 (cm) @430nm

DST(430nm)の分解能=0.15"

AO-ON 時 Strehl≒0.08となっている (はず) 分解能0.4秒角程度

Isoplanatism

130枚の平均像

AO-OFF分解能=1.5秒角 AO-ON分解能>0.3" (右図より実測) DST(430nm)の分解能=0.15"

中心部(波面補償のターゲット付近) では、偏差が小さい→補償がより効 いている

130枚にわたる各画素値の偏差

3. 現システムの性能、位置づけ

AOの性能を決める要因(J. W. Hardy, 1998)

(1) Fitting error σ_F^2 :波面形状再現の誤差 (2) Temporal error σ_T^2 :計測 - 補正のタイムラグ (3) Anisoplanatic error σ_{θ}^2 :物体と参照星の間隔 (4) Photon error σ_P^2 :センサーにおけるノイズ (5) Focal anisoplanatic error σ_C^2 :cone effect

AO通過後の残存波面誤差

$$\sigma_{\phi}^2 = \sigma_F^2 + \sigma_S^2 + \sigma_{\theta}^2 + \sigma_P^2 + \sigma_C^2$$

ストレール比
Strehl =
$$\exp\left(-\sigma_{\phi}^{2}\right)$$

太陽AOにおける残存波面誤差

 $\sigma_{\phi}^2 = \sigma_F^2 + \sigma_S^2$

時間的要因による誤差

・空間的要因による誤差

$$\sigma_F^2 = 0.28 \left[\frac{d}{r_0} \right]^{\frac{5}{3}} \qquad d: \mathsf{DMP} \mathcal{PF} \mathtt{LT} \mathcal{P} \mathcal{P}$$
間隔(瞳面)(m)

ストレール比
$$Strehl = \exp(-\sigma_{\phi}^2)$$

Mirror Type	Piezo (Xinetics) 4kHz
No. of Actuators	1369
Camera	CMOS 2000 fps
Microlens array	40x40 (1280 used)
Controller	DSP
Control frequency	1600 Hz
Band Width (0dB)	130Hz

Strehl = 0.3 (r0=7cm@500nm, V=12m/s) ・典型的なシーイングに対して、ストレール比 0.3を実現するように設計されている

アーキテクチャは
 Sac Peakと同じ
 (規模が大きいだけ)

Sac Peak (D=76cm)

Mirror Type	Piezo (Xinetics) 4kHz
No. of Actuators	97 (76 used)
Camera	CMOS 2000 fps
Microlens array	10x10 (76 used)
Controller	DSP
Control frequency	1600 Hz
Band Width (0dB)	130Hz

Strehl = 0.38 (r0=7cm, V=12m/s)

- ・現在動いているAOでは最も性能がよい
- ・Multi-conjugate実験も進んでいる

Hida DST (D=60cm)

,,,,,	Current	Future
Mirror Type	Elec.Mag. (ALPAO) 910 Hz	Piezo (Xinetics) 4k Hz
No. of Actuators	97 (60)	97
Camera Microlens array	CMOS 4000 fps 10x10 (56)	
Controller Control freq. Band Width (0dB)	PC (6 cores) 910 Hz 42 Hz	1500 Hz 87Hz

Strehl = 0.13 (r0=7cm, V=12m/s)

・時間的な性能が高くない
 ・口径が小さい分、空間的な性能は向上
 →新AOでは可変形鏡を変更
 Strehl= 0.42 へ

AO性能比較

Fried Parameter r0 (mm)

4. 問題点と課題 〇 補償能力が不十分 ・主に、システム動作周波数の不足 ・現状は可変形鏡の応答時間がボトルネック

(1) 画像処理による像改善

(2) AOそのものの性能向上→常設新システム

○ 像の伸縮が残っている

・上空ゆらぎの影響が大きい
 (3) multi-conjugate補償光学系の開発
 →ゆらぎ層の高さの測定

4(1)画像処理による像改善

(a) Phase Diversity法

on-focusとdefocus像を同時取得し、波面(PSF)と物体 を同時推定

(b) スペックル像再生法

太陽像が凍結している時間内に多数枚の短時間露光 画像を取得。統計処理で大気ゆらぎ成分をキャンセル する

(c) 多数フレームブラインドデコンボリューション法

異なる複数の波長で多数の短時間露光像を取得。コン ボリューション関係を満たす物体とPSFを同時推定

開発中の手法

- トリガーを与えて太陽像(長時間露光)とMLA像(短時 間露光、多数枚)を同時取得 - MLA像からPSF情報を求めてデコンボリューション

この処理による改善の効果は? AOを適用したときの残存波面誤差 $\sigma_{\phi}^2 = \sigma_T^2 + \sigma_S^2$ $\sigma_T^2 = 28.4 \left[\frac{\tau V}{r_0} \right]^3$ τ=0 → 誤差なし •時間的要因 r_0 :フリードパラメータ(m)、V:風速(m/s) τ:波面計測一鏡面変形のタイムラグ(s) $\sigma_S^2 = 0.28 \left| \frac{d}{r_0} \right|^3$ •空間的要因 d: DMアクチュエータの間隔(瞳面)(m) 波面センサーのサブアパーチャの間隔(m)

AO性能比較

観測像(450nm, 8ms露光)

処理結果

測定PSF 4000Hz 0.25ms露光 32枚

測定PSF 32枚の 平均

4(2) 常設型新AO装置の概要

- 反射率の高いミラー(>0.97)を使用。全体のスループットが50%以上
- M14の脱着によって水平分光器か垂直分光器かを切り替える
- M1とM16を取り外すと、ビームは直接垂直分光器に入射する
- その状態で、別のミラーを挿入すれば、AOを介さず水平分光器にビームを 導ける
- 可変形鏡にはXinetics社製 97 素子ピエゾタイプのものを使用する (M10)
- tip-tilt システムはより応答の早いものに置き換える予定 (M5)

M1	Flat Mirror, removable	M9	Flat Mirror
M2	Flat Mirror	M10	Deformable Mirror
M3	Flat Mirror	M11	Beam Splitter
M4	Off-Axis Parabola for TT	M12	Flat Mirror
M5	Tip-Tilt Mirror	M13	Off-Axis Parabola for DM
M6	Off-Axis Parabola for TT	M14	Flat Mirror, removable
M7	Flat Mirror	M15	Flat Mirror
M8	Off-Axis Parabola for DM	M16	Flat Mirror, removable

Solar SCIDAR

Solar SCIDAR

相関+平均処理で得られる結果

 $B_{solar}(\mathbf{r}) = \int_0^\infty dh \ B(\mathbf{r} - \theta h) * \left\langle \left| \widetilde{T} \left(\frac{f}{h} \mathbf{r} \right) \right| \otimes \left| \widetilde{T} \left(\frac{f}{h} \mathbf{r} \right) \right| \right\rangle * \left| Q \left(\frac{f}{h} \mathbf{r} \right) \otimes Q \left(\frac{f}{h} \mathbf{r} \right) \right| \right\rangle$

相関ピークを劣化させる項

(例)シーイング1.5" 開口0.5"の場合

ずらし1.5mm: A=4 8"

h=11k

m

ずらし3.0mm: A=9 6"

2012.5.27 8:37:57 観測データ(1枚目) 波長450±40nm 露光8.5ms、500枚 ずらし量1mm=3.2(")

フラット、マスク処理後 (1~5枚目)

8:30:01 ずらしなし

8:44:30 ずらし2mm=6.4(")

8:37:57 ずらし1mm=3.2(")

8:42:03 ずらし1.5mm=4.8(")

8:52:58 ずらし3mm=9.6(")

おわりに 太陽AOの特徴と課題

a. 非常に明るい

高速カメラの使用、多数の光学素子、波面分割が可能

← 費用、設計自由度の面で楽

b. 特徴的な構造が全面に分布している

太陽面上任意の場所でセンシング可能

← レーザ参照星のような参照光源不要

c. 大きく広がった物体である

・波面センシングの計算量が大きい

・補償が有効な範囲(可視で10秒角未満)を超える

← 周辺部での像のボケや、全体の像のゆがみなどを 補正するmulti-conjugate AOの開発が必要

d. シーイングが良くない

フリードパラメータ小、変動が速い、紫外域でも使用
く高性能なAOが必要となる