第4回可視赤外線観測装置技術ワークショップ 2014. 12. 3,国立天文台三鷹すばる棟大セミナー室

東京大学木曽観測所超広視野高速CMOSカメラ Tomo-eの開発

酒向 重行 (Institute of Astronomy, the University of Tokyo)

and

the Tomo-e Gozen project team:

M. Doi, K. Motohara, T. Miyata, N. Kobayashi, T. Morokuma, H. Takahashi, R. Osawa, T. Aoki, T. Soyano, K. Tarusawa, H. Maehara, H. Mito, Y. Nakada, S. Todo, Y. Kikuchi, (IoA, U Tokyo), F. Usui, N. Matsunaga (DoA, U Tokyo), M. Tanaka, J. Watanabe (NAOJ), N. Tominaga (Konan U), Y. Sarugaku, K. Arimatsu (ISAS/JAXA), Y. Ita, H. Onozato, T. Hanaue, H. Iwasaki (Tohoku U), S. Urakawa (Japan Spaceguard Association), H. Kawakita, S. Kondo (Kyoto Sangyo University)

後追いでは、 間違いなく言えるこ 次の時代、 で 国内、 何ができると言うのか? 可視光、 ング4秒角、 勝てない。 口径 と m ALL A JEX

Outline

- □ Development of Tomo-e
- □ New science capability with Tomo-e

Kiso Observatory

Kiso Observatory, the University of Tokyo

- Established in 1974
- **D** Open use operation
- Dark sky, 1,120m altitude
- □ Accommodation, Cafeteria

Kiso 105 cm Schmidt Telescope

Kiso Observatory, the University of Tokyo

Extremely wide field telescope

- **□** Field of view : φ 9 degrees
- **D** Primary : 150 cm spherical mirror
- **Corrector** : 105 cm aperture
- Focal ratio : 3.1

Photographic plate (36 cm x 36 cm) used until the 1990s

KWFC: Kiso Wide Field Camera

Kiso Observatory, the University of Tokyo

Kiso Observatorv

•	8 CCD chips with 8k x 8k pixels
---	---------------------------------

- F.O.V of 4.8 deg² (2.2 deg. x 2.2 deg). •
- Open use operation started in April 2012 ٠
- Fully automatic observation system using queue lists •

Pixel scale	0.946 arcsec/pix		
CCDs	2k x 4k MIT x 4		
	2k x 4k SITe x 4		
Read noise	5 – 10 e ⁻ (MIT),		
	20 e⁻ (SITe)		
Dark current	< 5e ⁻ / hour @-100 deg		

Field of View

Kiso Observatory, the University of Tokyo

Kiso Observatory, Institute of Astronomy, School of Science, the University of Tokyo

Extremely Wide-field CMOS Camera

Kiso Observatory, the University of Tokyo

(iso Observatory

the Tomo-e Gozen Camera; Tomo-e

- Kiso 105 cm Schmidt Telescope:
- Field of view : 20 deg² in ϕ 9 deg
- Sensor: 1k x 2k CMOS sensor[†] П
- Chips: 84
- Pixel scale : 1.2 arcsec/pix
- Frame rate : 2 frames/sec (max)
- Filter : SDSS-g+r, SDSS-g, SDSS-r ‡

⁺ Driven at ordinary temperature and pressure [‡] Manually exchange between filters in the daytime

Extremely Wide-field CMOS Camera

Kiso Observatory, the University of Tokyo

the Tomoe Gozer Kiso Observatory

👬 the Tomo-e Gozen Camera

- **D** Telescope: Kiso 105 cm Schmidt
- **D** Field of view : 20 deg^2 in ϕ 9 deg
- □ Sensor: 1k x 2k CMOS sensor⁺
- **Chips:** 84
- □ Pixel scale : 1.2 arcsec/pix
- □ Frame rate : 2 frames/sec (max)
- □ Filter : SDSS-g+r, SDSS-g, SDSS-r ‡

+ Driven at ordinary temperature and pressure+ Manually exchange between filters in the daytime

Tomo-e Gozen (Lady Tomo-e, 巴御前) born in the Kiso region in the 12th century and known with beauty and bravery.

Detection Capability for Transient Events

RAPTOR-Q

(10)

Targets of Tomo-e

Kiso Observatory, the University of Tokyo

Rare and Transient Phenomena

- Shock Breakout of core-collapse SN
- Explosion of Nova
- Optical follow up of Gravitational wave
- Afterglow of Gamma-ray burst
- Optical candidate of fast radio burst
- X-ray time variable objects
- □ Transit of Exoplanet
- Occultation by Trans-Neptune object
- Potentially Hazardous Asteroid
- □ Faint meteor

Occultation by TNO

Gamma ray burst

Neutron star marger \rightarrow GW

Planet transit

Outline

Overview of Kiso wide-field CMOS camera, Tomo-e

Development of Tomo-e

New science capability with Tomo-e

Focal Plane

35mm Full HD CMOS sensor sensor / package area = 0.3

- Total sky coverage 20 deg²
- Total 190 Mpixels
- 760 MB/exposure

CMOS Imaging Sensor

Kiso Observatory, the University of Tokyo

Canon 35 mm full HD CMOS sensor

developed by Canon and U-Tokyo based on products for commercial use.

- Low dark current at Room temperature
- Low readout noise in Fast frame rate

<u>Specification</u>				
Pixels	2000 x 1128			
Pixel size	19 μm			
Architecture	Front side illuminated + micro lens array			
Surface protection	Cover glass with AR coating			
Output	16 ch differential analog out			
Internal amplifier	G = x1, x4, x16, x64, x256			
Frame rate	30 fps (max)			
Read out mode	Rolling read out			
Power dissipation	1.8 W @30 fps			
QE (Aŋ)	0.45 @λ _{peak} =500nm, 0.25 @λ=380, 700nm			
Read out noise	<u>2.3 e⁻ rms @30 fps @G = x16</u>			
Dark current	<u>0.05 e⁻/pix/sec @273 K</u>			
Saturation	55,000 e ⁻ /pix @G = x1			
	5,700 e⁻/pix @G = x16			
Filling factor	Sensor area/Package area = 0.3			

60.9 mm x 44.6 mm

Kiso Observatory, Institute of Astronomy, School of Science, the University of Tokyo

Package size

Laboratory test and Test observations in U-Tokyo (2012-2013)

Evaluations of Front-side CMOS Sensor

- Readout noise
- Cross talk, Hysteresis
- Linearity, Dynamic range, Flatness -
- Photometric accuracy
- Quantum efficiency, Sensitivity
- Aperture ratio, Efficiency of micro lens _
- Dark current
- Temperature dependence (20 60 degrees)

FoV 40' x 20'

High dynamic range image M42 Orion star-forming region 1/30 sec x1,000 frame x 2 bands

Long integration time image NGC891 nearby edge-on galaxy 2 sec x100 frame x 5 dithers, V band

Kiso Observatory, the University of Tokyo

35mm Full HD CMOS sensor

First light observations CMOS sensor mounted on Kiso Schmidt telescope 2012/12/16-17

Limiting Magnitude of Tomo-e

- Higher sensitivity than CCD in t_{integ} < 10 sec.
- Higher exposure efficiency expected in continues observations because of zero readout time.

Photometric Accuracy

Kiso Observatory, the University of Tokyo

- Photometric degradation originated from microlens array not confirmed.
- Photometric accuracy depends on a frame rate.

Cross talk and Hysteresis

Image of α Aur (V_{mag} = 0.08)

- Cross talk in the same frame
 - Between separated pixels: < 10⁻⁸
 - Between neighbor pixels: not measured
- Hysteresis between frames
 - A few second time scale: < 10⁻⁶
 - Sub-second time scale: not measured

Good performance on cross talk and hysteresis confirmed

Conceptual Design of Camera System

Kiso Observatory, the University of Tokyo

✓ Mosaic mount of CMOS sensors

On a spherical surface of R = 3,300 mm

✓ Optical alignment accuracy

Alignment accuracy of \pm 100 μ m required

✓ Thermal and structural design

Ordinal pressure and Room temperature inside the chassis

✓ Video readout circuit

- Differential amplifiers and A/D convertors
- Total power dissipation is 30 W.

Kiso Observatory, the University of Tokyo

Large amount of data (760 MB/sec, 27 TB/night) is produced in 2 fps observation.

 \rightarrow Drastic reduction of raw data is required to record in storage.

Kiso Observatory, Institute of Astronomy, School of Science, the University of Tokyo

Time Table for Development of Tomo-e

Kiso Observatory, the University of Tokyo

Kiso Observatory

Tomo-e will be commissioning in 2017

Outline

- □ Development of Tomo-e
- **New science capability with Tomo-e**

Observation Strategy of Tomo-e

Kiso Observatory, the University of Tokyo

iso Observatory

- (1) 1-hour-cadence all-sky monitoring (high-cadence + very-wide-field)
- (2) 20-fps wide-field monitoring (very-high-cadence + wide-field)
- (3) Synergy with high-energy astronomy (very-wide-field + quick follow-up)
- (4) Near and interior Earth objects (wide-field monitoring for fast moving objects)

Kiso Observatory, Institute of Astronomy, School of Science, the University of Tokyo

1-hour-cadence All-sky Monitoring

Observation plan

- All sky (10,000 deg²), 1 hour cadence
- Recording period: 3 years
- Observation sequence:
 - 4 dithers x 170 pointing
 - short exposure (3 sec) \rightarrow readout (0 sec) \rightarrow dithering (2 sec)
- Limiting magnitude: V_{mag} ~ 18 (1 hour cadence)

 $V_{mag} \sim 19$ (1 day cadence)

Expected results

Bright, but Rare and Fast time-variable events

- Supernovae, Neutron star mergers, AGNs, Gravity lensing
- Novae, Stellar flares, Eclipsing binaries, Late type star, Exosolar planets
- Bursts of comets and asteroids
- Unknown transient phenomena

High-cadence All-sky SNe surveyWise Observatory, the University of TokyoImage: Constraint SN la progenitorShock breakout of core-collapse supernovae

- Tomo-e has 5 times higher capability than KWFC/Kiss SN survey (P.I. T. Morokuma) to detect SN shock breakouts.
- Spectroscopic data of All objects discovered by this survey can be obtained by 1 2 m class telescopes.

Expected detection rates of Novae and SNe

• 1 hour cadence, all-sky, 18 mag

N. Tominaga+ 2014/10

Event	Detection rate (events/year)	
Early phase of Nova	2	including M31
Shock breakout of C-C SN	5	

• 1 day cadence, all-sky, 19 mag

Event	Detection rate (events/year)	
Discovery of Nova	10	including M31
Early phase of Ia SN	1,600	M _v ~ -18 mag, 260 Mpc
Early phase of C-C SN	300	M _v ~ -16 mag, 100 Mpc
Superluminous SN	30	M _v ~ -21 mag, 1,000 Mpc
SN in Near-by Galaxy	0.5	M _v ~ -11 mag, 10 Mpc
Discovery of Faint SN	unknown	

Kiso Observatory, Institute of Astronomy, School of Science, the University of Tokyo

Expected results

Very bright, but Rare and Very Fast time-variable events

- Stellar occultations by Solar system objects
 - Duration time: a few 100 msec, Rate: a few dozen events/year
- Optical counterparts of Fast Radio Bursts
 - Duration time: ~10 msec, Rate: 0.5 events/day (when brightest case)
- X-ray variable objects: AGNs, YSOs, stellar flares

by Totani-san (private communication). Note, this flux estimation contains an inaccuracy of 7 orders.

20-fps Wide-field Monitoring

Observation plan

- 2 deg² (partially readout) in ϕ 9 deg
- 20 frame/sec
- Continuous monitoring of 10,000 stars
- Recording period: 1 year
- Limiting magnitude: V_{mag} ~ 14

2 deg² in φ 9 deg, 20-fps, 10,000 stars

Kiso Observatory, the University of Tokyo TNOs (Trans Neptune Objects) keep composition in pre-solar age.

- Bodies with km-size are important.
- It is too small to detect them even with large telescopes.
 - → Stellar occultations

Size and distance of TNOs

http://hubblesite.org/newscenter/archive/releases/2009/33/image/c/format/web_print/

Kiso Observatory, Institute of Astronomy, School of Science, the University of Tokyo

Stellar occultations by TNOs

Synergy with High-energy Astronomy

Kiso Observatory, the University of Tokyo

Kiso Observatory

東京大学

Kiso Observatory, Institute of Astronomy, School of Science, the University of Tokyo

Gravitational Wave Counterpart

Kiso Observatory, the University of Tokyo

Kiso Observatory

- \checkmark Error circle of arrival direction of GW $\sim \phi$ 5 deg
- Tomo-e can follow-up GW events with ϕ 9 deg \checkmark

Estimation of arrival direction of gravitational wave. Hayama (NAOJ) 2012

ra (deg)

110

29

115

120

Near and Interior Earth Objects

Kiso Observatory, the University of Tokyo

Observation plan

- Phenomena in background
- During other surveys

Expected results

- Faint meteor (sporadic and meteor shower)
 - Rate: a few dozen events/min
 - Brightness distribution of meteors.
 - Is the power law extended to faint meteors?
- Fast moving NEOs including PHA (Potentially Hazardous Asteroid)
 - Moving speed: 10-100 arcmin/sec
 - Such fast moving asteroids are not detected by CCDs with an ordinal FoV and exposure time.

Kiso Observatory, Institute of Astronomy, School of Science, the University of Tokyo

Kiso Wide-field CMOS camera : Tomo-e

- **T**elescope:
- Field of view :
- Sensor:
- Frame rate :
- **Commissioning** :
- Outstanding issue:

Scientific strategies

1-hour-cadence all-sky monitoring

Synergy with high-energy astronomy

20-fps wide-field monitoring

Near and interior Earth objects

- Kiso 105 cm Schmidt 20 deg² in φ 9 deg
- 84 CMOS chips
- 2 frames/sec (max)
- : 2017
 - Data handling and storage

Sub-second Time-domain

Summary