可視赤外観測技術ワークショップ 2014

位相•振幅同時計測器 O山本広大、松尾太郎、木野勝(京都大学)、今田大皓(筑波大学)

P.12

0. 概要:導入 光学素子の形状測定や補償光学において、波面測定は重要である。高精度(1/20 \)、高空間周波数(差し渡し32素子)、高頻度 (>1kHz)の波面測定を行う場合、波面の幾何形状を計測するよりも、位相を直接測定出来る方が有利になる。また、強度分布(ムラ)が測定出来れ ば、波面の情報量が増す。今回、形状(位相)と同時に強度情報を得られる波面センサを新たに提案する。

1. 波面センサ

波面センサ(wave-front sensor: WFS); 光学素子の形状計測や補償光学装置に用いられる。波面の形状(位相)と振幅(強度)分布を測定する。

	波面形状計測方式のバリエーション		振幅分布計測
	A. 幾何形状計測	B. 位相計測	C. 強度振幅計測
	^{模式図} 計測対象の波面→ <u> 速面形状(傾斜)</u> 理想的な波面→ ·····	^{模式図} 計測対象の波面→ <u>└└ӣ₦差</u> 理想的な波面→ ·····	 測定波面の(強度)振幅分布を測定する。 光学素子の反射率測定。 補償光学(adaptive optics: AO)では、位相 情報と組み合わせることで、より高精度の 波面補償が行える。
则定	理想的な波面に対する形状を計測する。 傾斜計測:シャックハルトマンセンサ(SHWFS) 曲窓計測:曲窓センサ(CWFS)	理想的な波面に対する波面の進み/遅れ(位相差)を 直接計測する。	

