

TMT第一期観測装置IRISの進捗

鈴木 竜二 (国立天文台)

- ► IRISの概要
- 光学系、機械系の検討状況
- プロトタイプによる性能検証

IRISの概要

TMT on Mauna Kea

- ► TMT第一期観測装置の一つ(IRIS, WFOS, IRMS)
- ◆ AOを用いた近赤外域での撮像と面分光
 - NFIRAOSの後段に配置
 - 波長域: 0.83-2.40ミクロン
 - ストレール比: 0.41(J), 0.60(H), 0.75(K)
- 撮像モード
 - ピクセルスケール:4ミリ秒/ピクセル
 - 視野: 16.4秒角 → 34秒角
- 面分光モード
 - 波長分解能: 4,000 10,000
 - ピクセルスケール: 4, 9, 25, 50ミリ秒/スパクセル

- 唯一30mの回折限界性能を利用できる観測装置
 - 空間分解能:10-25ミリ秒
 - 点源への感度(限界等級)∝D⁴:すばる望遠鏡の200倍
- 高精度のアストロメトリ
 - 30マイクロ秒の相対アストロメトリ
 - 2ミリ秒の絶対アストロメトリ
 - TMT/NFIRAOS/IRISでしか達成できないユニークな性能

9

11

12

◆非常に小さい波面誤差(40nm)を達成する光学系

- 光学設計、製作
- 冷却下でのアラインメント
- 非常に長い光学系
- 40nmの検証方法
- 30マイクロ秒の相対アストロメトリ
 - これまでに達成されたことのない精度
 - 10マイクロ秒 = 1/400ピクセル = 38nmの精度で天体の位置を決定
 - 天体、大気、望遠鏡、AO、装置をキャリブレーション、補正
- 非常に安定したシステム
 - 高精度のアストロメトリを達成するために、5-10年間は装置を開けない
 - 高い機械的精度を長期間に渡って保持

- 実現性検討段階
 - 「こんな事をやりたいです」という提案を作る。
- 概念設計段階(>1年)
 - 幾つかの設計を検討して、ベストな概念を選ぶ。
- 基本設計段階(>1年)
 - これを作れば実現できますという設計を練る。
- 詳細設計段階(>1年)
 - 製作(発注)できますという状態にする。
- 製作、組上げ(>2年)
 - 製作(発注)する。出来たものを組上げて評価する。
- 試験観測(>1年)
 - サイエンス観測ができる状態に仕上げる。

- 実現性検討段階(2005年開始)
 - 「こんな事をやりたいです」という提案を作る。
- 概念設計段階(5年間)
 - 幾つかの設計を検討して、ベストな概念を選ぶ。
- ●基本設計段階(4年目) ←今ここにいる。

- これを作れば実現できますという設計を練る。

- 詳細設計段階
 - 製作(発注)できますという状態にする。
- 製作、組上げ
 - 製作(発注)する。出来たものを組上げて評価する。
- 試験観測
 - サイエンス観測ができる状態に仕上げる。

IRISのスケジュール

THIRTY METER TELESCOPE

- ► TMT第一期観測装置の一つ(IRIS, WFOS, IRMS)
- ◆ AOを用いた近赤外域での撮像と面分光
 - NFIRAOSの後段に配置
 - 波長域: 0.84-2.40ミクロン
 - ストレール比: 0.41(J), 0.60(H), 0.75(K)
- 撮像モード
 - ピクセルスケール:4ミリ秒/ピクセル
 - 視野: 16.4秒角 → 34秒角
- 面分光モード
 - 波長分解能: 4,000 10,000
 - ピクセルスケール: 4, 9, 25, 50ミリ秒/スパクセル

- 2011年12月 概念設計段階終了
- 🗢 コミュニティからの要望
 - 広視野化(30" x 30"以上)の要望
 - 高コントラスト機能の要望
- 概念設計の抱える問題
 - 面分光モードのADC問題
 - AOをoff axisに最適化した時のストレール比低下問題
- 2014年4月から広視野化の検討を開始
- 34秒角の光学設計を日本が提案
 - 第一期観測装置候補のWIRCを実現
- 2014年10月のTMT SAC、TMT Boardで承認
 - お金にシビアなTMTでコスト増の提案が通るのは稀!

IRIS広視野化

IRIS広視野化

光学系、機械系の検討状況

各段階の初めにTMTと契約を結ぶ(Work Package)

- Statement of work
- 納入物
- 基本設計段階の納入物
 - 主要な仕様を満たす光学設計
 - ●波面誤差(=結像性能)
 - Throughput
 - 主要な仕様を満たす機械設計

●重量

- ●サイズ (パッケージング)
- ●固有振動数

●地震に対する耐久性

冷却駆動機構、光学素子支持機構の基本設計完了 - 構造解析

- 熱解析(冷却速度、冷却による変形)

機械設計

IRIS全体の振動解析が進行中

- 1000年に一度の地震に耐える(~4gの加速度)
- 振動による光学性能の劣化を防ぐ

プロトタイプによる性能検証

プロトタイプ

- ◆ 冷却駆動機構
 - 基礎データ構築
 - ●ベアリング、モーター、潤滑剤、センサーの選定、評価
 - システムとしての性能評価
 - ●XYステージ、回転ステージ、Geneva drive機構
 - 耐久試験

● 光学系

- 冷却光学系支持機構
 - ●接着剤の選定、冷却時のアラインメント評価
- 高精度軸外し非球面鏡の試作
- コーティングの試作
- 冷却時の鏡の変形評価
- 高反射率低波面誤差鏡の製作

プロトタイプ

- ◆ 冷却駆動機構
 - 基礎データ構築
 - ●ベアリング、モーター、潤滑剤、センサーの選定、評価
 - システムとしての性能評価
 - ●XYステージ、回転ステージ、Geneva drive機構
 - 耐久試験
- 光学系
 - 冷却光学系支持機構
 - ●接着剤の選定、冷却時のアラインメント評価
 - 高精度軸外し非球面鏡の試作
 - コーティングの試作
 - 冷却時の鏡の変形評価
 - 高反射率低波面誤差鏡の製作

高精度軸外し非球面の製作(Precision Asphere)

- 軸外し量: 405 mm
- コニック定数:-0.278
- 曲率半径:1400 mm (凹面)
- 基板サイズ: 140 x 140 mm (CA: 116 x 116 mm)
- 基板材: Zerodure
- 面精度仕様: 6 nm (rms)
- 面粗さ仕様: 0.5 nm (rms)
- 価格:40,000 USD
- 高精度軸外し非球面の製作(パール光学)
 - 面精度(測定結果): 4.7 nm (rms) → WFE of 9.4 nm (rms)

高精度軸外し非球面の 製作/測定

高精度軸外し非球面の 製作/測定

36

- TMTの観測は4千万円/一晩 → 1,000円/秒
- 1%/面のFresnel lossが10面あったら~10%のロス → 4百 万円/一晩
- コーティングにお金をかけても十分payする。

基板:合成石英
 平均反射率(測定結果):
 99.7% over 0.84 – 2.40 um

● 基板:合成石英

● 平均透過率(測定結果): 0.4%/ 面 over 0.84 – 2.4 um

● 平均透過率(測定結果): 98% over 0.84 – 2.4 um

高反射率低波面誤差鏡 実現のための試作

- 多層膜コーティングはある程度までは層数を詰めば性能 が良くなる。
- 基板と膜材との熱膨張率の違いによって基板がゆがんでしまう。
- IRIS撮像系は波面誤差の仕様が厳し いので基板を歪めたくない。
- 基板の歪みを直す方法
 - 基板を厚くする。
 - 裏面に補正コーティングをする。
 - アニーリングする
- 高反射率低波面誤差鏡を実現するプロセスを確立したい。

- Double TMA光学系の組上げ、アラインメント、評価手 法の定量的な検討
 - 鏡単体の調整、評価
 - Collimator, Camera単体の調整、評価
 - 常温での調整、評価
 - 低温での調整、評価

- 鏡が動くと星像がボケる
 - ●~100nm, ~0.1 arcsecの振動