第6回 可視赤外線観測装置技術ワークショップ 2016.11.24-25 於国立天文台三鷹

小望遠鏡用補償光学装置の開発

東京大学天文センター 峰崎岳夫

- 技術発展の方向性
 - 先鋭化(大型化、多素子、多天体、多層共役、高精度、広視 野、中間赤外線、レーザーガイド星、面光源・・)
 - 安価、普及、丈夫、使いやすい
- ・開発、技術取得、教育の方向性
 - 大型プロジェクトの分担、高度な要素技術
 - 小型プロジェクトの主要部分、短期間で全体を俯瞰

補償光学(AO)と私

- 私の研究歴
 - 天文学:銀河、活動銀河核、重力レンズクエーサー、宇宙論
 装置開発:
 - ・赤外線(可視も)カメラ: PICNIC、 MIP
 - ・望遠鏡: ISAS 1.3m、(木曽1.0m)、MAGNUM 2.0m(薄メニ スカス主鏡・WH)、miniTAO 1.0m、TAO 6.5m (active optics)
- AO との接触
 - 学部4年:早野さんの修士論文発表会を聞いていた
 - 大学院生:すばるAO36の開発(高見さん、大坪さんなど)を 横で見ていた
 - 助教:すばるAO188を使った観測研究に参加(共同研究)
 AO 技術の専門家ではありません

AO開発の動機

- 高い空間分解能は素晴らしい!
 - 活動銀河核:銀河核成分と母銀河成分の分離
 - 重力レンズ:近接した重力レンズ像の分離

AO開発の動機

- AO を使った観測
 - 明るい観測ターゲットはいっぱいある
 - モニター観測したい、何かあればすぐ観測したい
 →大望遠鏡のAO装置の利用は難しい

小望遠鏡でもなんとかならないか?

Noda, TM+16

http://www.astron.kharkov.ua/dip/maindep.htm

小望遠鏡用可視AO

- − FWHM~0.1 arcsec
- 大気のみに依存する要素は難しくなる
 - 制御速度(r₀/v)、視野(r₀/h)

AO 主要部品の低価格化

- 可変形鏡
 - 市販製品の登場
 - 安価な製品の例: Thorlabs DMP 40: 税抜~50万円

エプソンダイレクト

- 波面センサー
 - そこそこ低ノイズで安価な CCD/CMOS; USB/ethernet 読出し
 取っ付き易くなった(難しいことをしなければ)

小望遠鏡用可視AOの意義

	大望遠鏡用赤外線AO	小望遠鏡用可視AO
望遠鏡口径	6-10m	1-2m
観測波長	近赤外線(1-4um)	可視(0.4-0.8 um)
角度分解能	∼0.1 arcsec	∼0.1 arcsec
観測可能夜数	数晚	豊富
費用	高価	「安価」
観測目的	暗い天体 高精度観測	明るい天体のサーベイ、 モニター、突発現象

- ・ 私の「小望遠鏡用可視AO」の目標
 - 重力レンズクエーサーや活動銀河核の観測
 - 観測目的が達成できれば技術的には「普通」で良い

先行研究

- Robo-AO (http://www.ifa.hawaii.edu/Robo-AO/)
 - 可視、近赤外線 - レーザーガイド星システム
 - 高度な自動化

Baranec et al 2012 SPIE

先行研究

- Robo-AO (http://www.ifa.hawaii.edu/Robo-AO/)
 - サイエンスケース
 アウトリーチ

Ziegler+16 Kepler 系外惑星候補のフォローアップ

Branec+12

先行研究

- Robo-AO(http://www.ifa.hawaii.edu/Robo-AO/)
 - コピー機の普及活動
 →これを買ってきて観測目的が達成されればそれで良い
 でもお高いんでしょう?
 - AO装置としての先端技術が 一式詰まっている
 - 小望遠鏡でも装置プロジェクト としては大人数が関わる

全く同じことを目標に 開発してもなあ・・

Project Scientist	Nicholas Law (UNC Chapel Hill)
Co-Investigator	A. N. Ramaprakash (IUCAA)
Software Lead	Reed Riddle (Caltech)

Christoph Baranec	Reed Riddle	
Rebecca Jensen-Clem	Dmitry Duev	
Nicholas Law	Michael Feeney	
Morgan Bonnet		

The Robo-AO Kitt Peak Team (2015-)

The Robo-AO Team (Palomar 2009-2015)

Principal Investigator	Shri Kulkarni (Caltech)
Project Scientist	Reed Riddle (Caltech)
Data Scientist	Dmitry Duev (Caltech)
Robo-AO PI/Inst, Scientist	Christoph Baranec (U. Hawai'i)
Robo-AO PS	Nicholas Law (UNC Chapel Hill)

Students	

Graduate	Rachel Bowens-Rubin (U. Hawai'i)*
	Maïssa Salama (U. Hawai'i)*
	Rebecca Jensen-Clem (Caltech)*
	Dani Atkinson (U. Hawai'i)*
	Carl Ziegler (UNC Chapel Hill)*
	Larissa Nofi (U. Hawai'i)
	Amy Ray (Mississippi State)
	Gina Duggan (Caltech)
	Avinash Surendran (IUCAA)
	Kristina Hogstrom (Caltech)
	Shriharsh Tendulkar (Caltech)
Jndergraduate	Jessica Schonhut (U. Hertfordshire/U. Hawaii, '17)*
	Celia Zhang (Caltech '18)*
	Bianca Avalani (Caltech '17)
	Rachel Thorp (Caltech '16)
	Chatarin "Mee" Wong-u-railertkun (Caltech '14)
	Dan Filler (Univ. of Utah '13)
	Corinne Vassallo (Carnegie Mellon '13)
	Victoria "Ashley" Villar (MIT '14)
	Athanasios Papadopoulos (Aristotle U., Thessaloniki '13
	Ankit Arya (Mississippi State '12)
	Alexander Rudy (Pomona '11)
	Marland Sitt (Caltech '11)
	(* currently active students on project)

Observing	team	(Kitt	Peak)	

/ Ray	Megan Nieberding
k Trueblood	

Science team (Palomar)

Christoph Baranec	Richard Dekany
John Johnson	Mansi Kasliwal
Shri Kulkarni	Nicholas Law
Timothy Morton	Eran Ofek
A. N. Ramaprakash	Reed Riddle
Shriharsh Tendulkar	Lynne Hillenbrand
Sergi Hildebrandt	Gregg Hallinan
Michał Drahus	Leon Harding

Fechnical team (Palomar)

Original CAMERA concept and testbed team

Christoph Baranec	Khanh Bui
Mahesh Burse	Pravin Chordia
Hillol Das	Jack Davis
Ernest Croner	Richard Dekany
Jason Fucik	Nicholas Law
Sujit Punnadi	A. N. Ramaprakash
Reed Riddle	Roger Smith
Shriharsh Tendulkar	Jeff Zolkower
Kristina Hogstrom	Dani Atkinson
Gina Duggan	Avinash Surendran

(* currently active students on project) Science team (Kitt Peak - under construction)

•	,	
Shri Kulkarni	Christoph Baranec	
Nicholas Law	Reed Riddle	_
Reherca lensen-Clem	Dmitry Duey	

Matthew Britton	Nicholas Law
Viswa Velur	Lothar Ratschbacher (U. of Vienna '08)
Dan Beeler (Pomona '09)	Wojciech Makowiecki (Jagiellonian U. '08)

Technical team (Kitt Peak - under construction)

小望遠鏡用AO試験装置の開発

- 「技術実証」に目標を再定義
 レーザーガイド星は次のステップで
- まずは「やってみる」
 - AOシステム全般にわたる基本技術の習得
 「教科書」を読んだだけで野球はできない
 AO自体+調整、較正、望遠鏡取付、観測手順、天文学
- 安価で「手頃な」AO装置
 - 可変形鏡、コンピュータ、波面センサーカメラは安価な市販品
 - 既製品のレンズ光学系、性能評価用小型サイエンスカメラ
 - これらのコンポーネント群でどこまでできるか性能評価 実用的なシステムのためには何をどうアップグレードする必 要があるか(その費用も)見極める

- 体制
 - 仕様策定(峰崎)
 - 設計、製作(㈱西村製作所)
 - 制御ソフト改良、実験、性能評価(東大学部生卒業研究課題)
 アドバイザー(大屋さん@国立天文台、日本補償光学情報交換会)

- 試験観測1
 - 2016年6月30日~7月5日、於広島大学かなた望遠鏡
 - 観測の受け入れと支援について、大変に感謝しております

http://hiroshima-u.jp/hasc/institution/telescope/abstract

- 試験観測1
 - 2016年6月30日~7月5日、於広島大学かなた望遠鏡
 - 観測条件はあまり良くなかった(梅雨どきの雲間からの観測)

シャックハルトマン 画像データ

- 試験観測1
 - 2016年6月30日~7月5日、於広島大学かなた望遠鏡
 - PSF がシーイングサイズから有意に改善

- 試験観測2
 - 2016年11月29日~12月3日(予定)、 於兵庫県立大学西はりま天文台なゆた望遠鏡
 - 改良後(感度、制御ソフト)取付
 - どうぞよろしくお願い致します

http://www.nhao.jp/research/nayuta_telescope.htm

• 将来計画

– ESO La Silla 1.0 m 望遠鏡に搭載を検討中(with UCN, PUC)
 シーイングの良いサイトでこそAOは本領を発揮する

終わりに(1)

- 我々は良い時代に生きている!
 - 大型望遠鏡に最先端の観測装置が搭載されている!
 - 観測装置を自分で作らなくても、最先端の観測装置を使って、 最先端の論文が書ける!
 - 観測しなくてもアーカイブデータがある!
 - 電波だって X線だって観測して解析して論文を書ける!
 - たくさんの最先端の観測装置プロジェクトに参加できる!
- これからの可視赤外線観測装置開発
 - コミュニティとして高度化した技術に追随していく必要はある
 - 天文学者が最先端技術の隅々までやる必要はない(?) 会社にまかせる、工学系の研究室と協力する 天文学観測の視点からの仕様要求策定と性能評価 技術者と「お話」できればよい・野球はできなくても審判はできる

終わりに(2)

- 観測装置開発への学生の参加
 - いろいろなやりかたがあってよい 各大学、研究機関によってミッションは違う・ミスマッチに注意
 - 天文学の研究者としての経験を積む 天文学論文までのタイムスケールを短く(あるいは並行して)
 - 研究者として自立していくときの+αの武器に
- 小規模観測装置開発の役割
 - 短いタイムスケールでユニークな天文学の研究を(理想)
 - [天文学要求→装置開発→観測解析→論文]の全体を俯瞰 システムエンジニアリング的視点を学ぶ

