赤外吸収メタマテリアル

理化学研究所 田中メタマテリアル研究室 理化学研究所 光量子工学研究領域 東京工業大学

田中 拓男

第6回可視赤外線観測装置技術WS November/24/'16 11:30-12:00

Metamaterials

negative index/negative refraction

R

Ro

cloaking

en used to calculate ray trajectories in the cloak, assuming that the Poynting vector. (**A**) A two-dimensional (2D) cross section of in the annulus of cloaking material contained within $R_1 < r < R_2$ from their original course. (**B**) A 3D view of the same process.

perfect lens/ super lens

SIKEN

Metomoteriols

メタマテリアル

波長より細かな(サブ波長)人工構造を用いて、 物質の光学特性(n, ε , μ)を操作した人工物質

Discrepancy between extinction coefficient and absorption

Metamaterial absorber

- Nano scale structures on flat metal film (no transmission)
- Impedance matching for no reflection
 - ➡ Perfect absorption by ultra-thin layer

Outline

光を吸収する技術と、その応用

- 1. Non-radiative surface plasmon (Dark plasmon)
- 2. Dark plasmonic metamaterials for absorber
- 3. Application of dark metamaterials for molecular sensing
- 4. (Fabrication technique for 3D Metamterials)

Dark plasmons

1st mode (dipole mode)

Light

+ Radiation (Loss)

Excitation \bigcirc

Q-factor low

Dark plasmons

2nd mode

Excitation

Q-factor

high

Dark plasmons

Bright plasmons Dark plasmons

Outline

- 1. Non-radiative surface plasmon (Dark plasmon)
- 2. Dark plasmonic metamaterials for absorber
- 3. Application of dark metamaterials for molecular sensing
- 4. (Fabrication technique for 3D Metamterials)

► E Excitation

Rediation

Numerical results (by FEM)

Time resolved Photoemission Electron Microscopy

Collaboration with Prof. Misawa & Ueno in Hokkaido Univ.

4nm spatial resolution

Metomoteriols

Outline

- 1. Non-radiative surface plasmon (Dark plasmon)
- 2. Dark plasmonic metamaterials for absorber
- 3. Application of dark metamaterials for molecular sensing
- 4. (Fabrication technique for 3D Metamterials)

Metamaterial absorber

Discrepancy between extinction coefficient and absorption

Sci. Rep. <u>5</u>, 12570 (2015).

Metamaterial absorber

- Nano scale structures on flat metal film (no transmission)
- Impedance matching for no reflection
 - ➡ Perfect absorption by ultra-thin layer

Metamaterial absorber

Nano scale structures on flat metal film (no transmission) Impedance matching for non-reflection

➡ Perfect absorption

Outline

- 1. Non-radiative surface plasmon (Dark plasmon)
- 2. Dark plasmonic metamaterials for absorber
- 3. Application of dark metamaterials for molecular sensing
- 4. (Fabrication technique for 3D Metamterials)

Finger print region

Reflection Absorption Spectrometry (RAS)

[1] A.Gole et al., Langmuir 20, 7117 (2004).

16-Mercaptohexadecanoic acid

C–H stretching vibrational modes 2850–2863 cm⁻¹ (symmetric) 2916–2936 cm⁻¹ (asymmetric)

Recipe for 16-Mercaptohexadecanoic acid SAM

- 1) Au substrate immersed in a 10⁻³M solution in ethanol for 36 h.
- 2) Then, rinsed in ethanol and dried with N_2 gas.
- 3) Characterized with FT-IR (Reflection Absorption Spectroscopy)

Reflection Absorption Spectrometry (RAS)

F. Neubrech et. al, Phys. Rev. Lett. 101, 157403 (2008)

SEIRA (Surface enhancement IR absorption) using coupling of plasmon with vibrational mode of molecule.

CH3(CH3)16CH2SH

Resonant Coupling Absorption Spectroscopy

- Background suppression
- Resonantly enhanced signal
- Zepto-mol sensitivity

Sci. Rep. <u>5</u>, 12570 (2015).

IR characterization

Sci. Rep. <u>5</u>, 12570 (2015).

Sci. Rep. <u>5</u>, 12570 (2015).

Absorption Properties

Numerical calculation

16-MHA modeled using Lorentz dielectric function:

n: $\varepsilon(\omega) = \varepsilon_s \left(1 + \frac{\omega_p^2}{\omega_0^2 - \omega^2 + i2\gamma\omega} \right)$

Nano fluidic device with metamaterial absorber

RIKE

iteriols

Absorption engineering by metal nano structures

Original Data By aluminum structure

RIKE

Outline

- 1. Non-radiative surface plasmon (Dark plasmon)
- 2. Dark plasmonic metamaterials for absorber
- 3. Application of dark metamaterials for molecular sensing
- 4. Fabrication technique for 3D Metamterials

Self-folding of Bi-layer Metallic Structures

Self-folding of Bi-layer Metallic Structures

Adv. Opt. Mater 2014 nature "Research Highlights" **<u>515</u>**

Self-folding of Bi-layer Metallic Structures

Adv. Opt. Mater 2014 nature "Research Highlights" **<u>515</u>**

Metomoteriols

Optical Characterization

- Magnetic (LC) resonance at f = 30 THz (λ = 10 μ m)
- Excellent agreement b/t the experiment & simulation

SRRアレイの異方性

単一共振器の異方性

n~0.3

Retrieved Effective Optical Parameters

- Lorentz-like responses at f = 30 THz
- n largely swings from 0.35 to 1.9

Isotropic metamaterial by stress tension assisted EB litho. an example of combination of top-down and bottom-up

垂直入射, θ 依存性

¢ p-pol.

s-pol.

入射(ϕ)角依存性

Conclusion

- 1. Non-radiative surface plasmon (Dark plasmon)
- 2. Dark plasmonic metamaterials for absorber
- 3. Application of dark metamaterials for molecular sensing
- 4. (Fabrication technique for 3D Metamterials)

