

SUNRISE-3気球実験における国際協力

勝川行雄¹, 清水敏文², C. Quintero Noda², 久保雅仁¹, 原弘久¹,一本潔^{1,3} 都築俊宏¹, 浦口史寛¹, 納富良文¹,末松芳法¹, 石川遼子¹, 鹿野良平¹ 田村友範¹, 大場崇義², 川畑佑典², 永田伸一³, 石川真之介⁴ J. C. del Toro Iniesta⁵, S. Solanki⁶

1: 国立天文台 2: ISAS/JAXA 3: 京都大 4: 名大 5: IAA-CSIC 6: MPS

2018/2/25

可視赤外線観測装置技術ワークショップ

国際大気球太陽観測実験 SUNRISE-3 (SCIP

光球・彩層の高解像度・高精度偏光分光データを獲得する

2

- 2021年に3度目の飛翔SUNRISE-3を計画
 - 分光能力を強化
 - 近赤外線偏光分光装置SCIP(スキップ)を 日本主導で開発

- 口径1m(ひのでの2倍)の光学太陽望遠鏡
- NASA・Long Duration Balloonでスウェー デンESRANGEからカナダまで大西洋上空の 高度約35-37kmを1週間飛翔
 - 紫外線域 (波長 200 400 nm)の観測
 - シーイングの無い高解像度・高精度偏光観測
- 2009年と2013年に2度観測を実施
 - ドイツ・スペインの撮像装置(UV・可視)を搭載

Why we joined SUNRISE-3

<u>CLASPロケット実験</u>

- 紫外線域(Lya 121 nm, Mg II 280 nm)の 高精度 (~10⁻³) 偏光観測 (空間分解能1", 観測時間5 min)
- First flight in Sep. 2015,
- Second flight in Apr. 2019

<u>SUNRISE-3</u>気球

- SOLAR-Cで目指したφ1mと同等 の口径
- 比較的短時間で飛ばすことができる

SOLAR-C衛星

- 衛星搭載用分光器の光学・構造設計 → 「ひので」では望遠鏡部を開発 → SOLAR-Cでは焦点面装置を作りたい
- それに必要な高精度・高信頼性可動機構

2018/2/25

SUNRISE-3の焦点面装置

Science instruments

SUSI = SUNRISE UV Spectropolarimeter and Imager $\lambda = 300 - 408$ nm

SCIP = SUNRISE Chromospheric Infrared Spectro-Polarimeter $\lambda = 770$ nm, 850 nm

IMaX+ = upgraded Imaging Magnetograph eXperiment λ = 517, 525 nm

Service Units

- ISLiD = Image Stabilization and Light Distribution system
- CWS = Correlation tracker and Wavefront Sensor

2018/2/25

2018/2/25

SUNRISE-3ゴンドラと指向精度

磁気エネルギーの 輸送・散逸プロセスを MHD数値計算で再現 できつつある

- Alfvén波の伝播と
 非線形モード変換
- ジェットの駆動 など

再現できているように見えるが、観測と直接比較するため

- 空間解像度の向上 → 観測においついていない
- 非平衡電離・弱電離プラズマの効果 → 散逸・熱化プロセスに影響

3D磁場観測を実現する鍵

多数のスペクトル線を 同時に観測

 光球・彩層をシームレス にカバーできる2波長帯 を偏光分光観測

偏光分光観測の高精度化

- 弱い彩層磁場の測定のため0.03%の精度が必要 (ref. 「ひので」0.1%)

- 「ひので」衛星と「CLASP」ロケット実験で蓄積された技術を発展
- 大口径化 (「ひので」50 cm →SUNRISE 1 m)

2018/2/25

SCIPの光学構造開発

<u>SCIP光学・構造設計 (NAOJ: 都築, 浦口, 原)</u>

可視赤外線観測装置技術ワークショップ

32.5 29.3 26.2

20.0

16.B 13.7

2018/2/25

camera

cameras

Simulating power

dissipation in the

45.0 40.6 36.2 31.8 27.5 23.1 18.7 14.3 10.0 56.2 1.25 1

12

0.18

Radiator Total Area [m2]

SCIPの光学構造開発

CFRPサンドイッチパネルのCTEを ひずみゲージで想定 脱水変形量の測定 -> 継続中

納入された光学ベンチパネル (2019/2/22)

鏡をフレクシャに接着する 方式を採用 小型平面ミラーを用いて 形状変化の測定 2018/2/25
 パッド位置
 +0.00983

 wave
 wave

 0.01447

 PV
 0.024

 wave

 cms
 0.004

 Bize X
 cm

 Bize Y
 cm

2018/2/25

可視赤外線観測装置技術ワークショップ

14

スペース高精度偏光測定のための回転駆動機構

- SOLAR-C向け技術開発
- CLASPロケット実験(Lyα偏光観測)で飛翔実証 (2015, 2019[予定])

回転波長板駆動機構 (偏光変調装置)

- CLASPより高速回転(4.8sec/rot -> 0.5 sec/rot)でも一様回転を維持、低擾乱
- 波長板:水晶とサファイアの2枚構成
 - 波長&温度依存性が十分小さいことを実証
 - 低反射率ARコートでゴーストによる偏光精度劣化を抑制
- ドイツ担当のUV偏光観測装置にも同 じ駆動機構を提供

10.000 Angle error (deg 0.1000

0.0010

0.0001

0

period (n) Frequency

140

130

Measurement of the test waveplate

試作波長板の遅延量

Quartz + Sapphire

静電容量センサーと電磁アクチュ エータで鏡のチルト制御

- 次世代衛星向け要素技術開発→フライト 品への発展
- 性能
 - 安定度: <1" (3σ)要求、実績<0.3"(3σ) (~0.01"の指向安定度に相当)
 - レンジ: ±1000" (±35"に相当)
 - 1ステップ: 2.6" @ 1/16 sec <20 msecで安定

SMM-TM

actuator x4

sensor x2

SMM-IF (静電容量センサーのアンプ)

SUNRISE-3における国際協力

■ 日本の計画

- ISAS/JAXA太陽観測小規模プログラム (FY2017-21)
 CLASP2ロケット実験と共同
- 科研費基盤(S) (FY2018-22, 2回目で採択) 「気球太陽望遠鏡による精密偏光観測: 恒星大気における磁気エネ ルギー変換の現場に迫る」
- 欧州は昨年の段階で予算獲得済み
 - ドイツ・ MPS:マックス・プランク研究所で全体の予算獲得
 - スペイン IAA-CSIC: 2017-18に概念設計、2019以降FM開発
- 米国
 - JHU-APL: ゴンドラ開発予算をNASAで獲得 (2回目で採択)

2021年のフライトを目指して、国際協力も着実に進んでいる

SUNRISE-3における国際協力

- 2歩下がって3歩進むの繰り返し
- 光学・構造
 - - 上流光学系を設計してみたらケラれることが分かったら、入射光位置をずらしたい (ドイツ→日本)
 - マウントポイント位置、前と違うんだけど、、、(日本→ドイツ)
- 熱

- 他の機器の発熱量・熱モデルが無いと決められないと言われ遅れ(スペイン) 電気
 - 文書内でコネクタのオス・メスが矛盾している (日本↔スペイン)
 - 日本側の駆動機構のエミュレータを用意したけど、スペイン側でつなぐもの がまだできていない
- マネージメント
 - 文書管理、スケジュール管理、協定(契約)などなど

■ 国際大気球太陽観測実験SUNRISE-3

- 2021年フライトを目指して国際協力で進めている
- 高解像度・高精度な彩層磁場データを手にする絶好のチャンス
- 「ひので」で世界のトップに立ったスペース偏光観測技術を発展 させ、さらにCLASPやSOLAR-Cに向けて開発された技術を最 大限活用し、将来の高精度偏光観測につなげる
- 大型プロジェクト・人工衛星に相当する規模の装置開発
 を比較的小さいグループでやるのはなかなか大変。。。