第9回 可視赤外線観測装置ワークショップ 2020年12月Online

# MOIRCSに搭載された LightSmyth製新グリズムの性能評価

田中壱<sup>(1)</sup>、海老塚昇<sup>(2)</sup>、児玉忠恭<sup>(3)</sup>、本原顕太朗<sup>(4,5)</sup>、服部 尭、田中陽子<sup>(1)</sup>、小俣浩司<sup>(1、5)</sup>、高橋英則<sup>(6)</sup>、小西真広<sup>(4)</sup>

(1) Subaru Telescope, NAOJ (2) Riken (3) Tohoku Univ. (4) Tokyo Univ (5) ATC, NAOJ (6) Kiso Observatory, Tokyo Univ

#### Introduction



- MOIRCS ... Multi-Object Near-Infrared Camera and Spectrograph for Subaru 8.2-m Telescope.
- Its Medium-Resolution VPH Grisms have Issues.
  - Peaky Transmission Curve
  - Large Dependence to the Angle of Incidence (AoI).



Fig.1: An example of the VPH grism transmission curve for MOIRCS (Ebizuka et al. 2011).

### Introduction

- LightSmyth Technologies/Finisar has made a great grating.
  - ✓ Very High Peak Efficiency
  - ✓ Wide Spectral Coverage
  - $\checkmark$  Minimum Dependence to the AoI and Polarization
  - $\checkmark$  Tough (up to ~500°C).

No astronomical application has ever made.

We decided to make grisms using the LightSmyth Grating.



#### **Grating Design**





- H-band Grating...Custom Made, with Peak Efficiency ~98%.
- Covers most H-band window with >90% as a grism.

- J-band Grating...Catalog (T940C) with Peak Efficiency ~93%.
- Covers most J-band window with 80% as a grism.

#### Assembly



- Thinness of the Grating Substrate is the Issue.
  - Only 0.65 mm for J, 0.9 mm for H.
- Order-of-Magnitude Difference in the Thermal Expansion Rate among Prisms (ZnSe) and Grating (FS).
  - ightarrow We gave up gluing Grating and Prism.
  - ightarrow "Sandwich Design" without Glue.



But ghosts are then a Concern ... We put Shims

on one-side of Prisms.

# Assembly



#### **Stability Tests**

- Change of the Wavefront Error with Gravity Direction is Evaluated.
- LS\_J is Worse than LS\_H Due to Its Thinness.





#### **Cooling Test**

- Checking Stability over the Thermal Cycle.
- Wavefront Error Measurements with Cooling.



Additional Prisms for Zygo Measurement

#### **Cooling Test Results**

- Relatively Stable Across Thermal Cycle.
- LightSmyth-J is Worse Due to Its Thinness.



#### **Checking Degradation with EE80.**



- Degradation is at most ~1 pix for Worst Case for LS\_J.
- It does not affect to the data in Natural Seeing Condition.

# **On-Sky TEST (July 2020)!**

- Beautiful and Great Sensitivity!
- Ghosts...but found to be negligible to the Data.





# **On-Sky TEST !**

- Ghosts... internal reflection of the 0-th-order light.
- But found to be totally negligible to the Data.



#### Ghost Image for LS\_J grism.

- Position is predictable.
- Stable and disappeared by A-B subtraction.

### Conclusion

- 1. Application of the LightSmyth Grating to Astronomical Use was Successfully Done!
- **2.** Amazing Flatness and Great Total Efficiency are Achieved!
- **3. Effect of Ghosts are Found to be Negligible.**
- 4. LS\_J is Somewhat Unstable than LS\_H, though Will Not Affect the Observation.
- **5. We Will Remake LS\_J Grism in the Future for ULTIMATE-Subaru.**
- 6. Open-Use Obs Has Started from S20B. A Paper is Submitted Already.



H $\beta$  & [OIII] in QuickLook Spectra from LS\_J grism (30 min). Image by courtesy of Dr. M. Schuramm (Rakshit et al. ApJL, submitted).