

SLMを用いたダークホール技術に関する研究: 計算機シミュレーション

〇米田謙太(北海道大 D2) 村上尚史,一圓光,小池隆太(北海道大), 西川淳(国立天文台/総研大/アストロバイオロジーセンター)

> 可視赤外線観測装置技術ワークショップ 2020年12月2日

▶ 究極目標:スペクトル解析によるバイオマーカーの検出
 ▶ 問題:恒星-惑星間のコントラスト

• 光強度比 太陽型星:地球型惑星= 1:10⁻¹⁰

◆ 高コントラスト観測装置

望溒鏡瞳

恒星

▶ 恒星光を除去し、惑星の観測を可能とする

LUVOIR

- LUVOIR-A:口径15m
- LUVOIR-B:口径8m
- ≻ HabEx:口径4m

▶ 地球型系外惑星の直接観測

▶ 将来のスペースミッション:LUVOIR、HabEx

▶ 高コントラスト観測システム

◆ 高コントラスト観測システムテストベッドEXISTの開発

▶ 複数タイプのコロナグラフの実験が可能

▶ 空間光変調器(SLM)を用いたダークホール技術

4 F

✓ ダークホールアルゴリズム

- ①: Speckle nulling
- 2 : Electric Field Conjugation (EFC)
- ✓ SLMの制御可能範囲
- ✓ 数値シミュレーション
 - Broad/Deep survey $\pm \ddot{k}$

▶ 8分割位相マスク^[1]、光渦マスク^[2,3]など

◆ ナル干渉計型

▶ サバール板横シヤリング・ナル干渉計(SPLINE)^[4]

[1] Murakamietal., Publ. Astron. Soc. Pacific, 120, 1112 (2008).
 [2] Fooetal., Opt. Lett., 30, 3308 (2005).

. [3] Mawet et al., Astrophys. J., **633**, 1191 (2005). [4] Murakami & Baba, Opt. Lett., **35**, 3003 (2010).

HOKKAIDO UNIVERSITY

4

HOKKAIDO UNIVERSITY

ダークホール技術

◆ ダークホール範囲の制限

	波面制御装置		
	可変形鏡(DM)	空間光変調器(SLM)	
制御素子数	少ない(e.g., 64 × 64)	多い(e.g., 512×512)	
ナイキスト制限	狭い	広い	

計算機シミュレーション

◆ 2つの観測モード

- ➢ Broad survey モード
 - ✓ 巨大ダークホール形成(+ポストプロセスADIなど)
 - ✓ 惑星発見、惑星系アーキテクチャ観測など
 - ✓ アルゴリズム:Speckle nulling
- ➢ Deep survey モード
 - ✓ ピンポイントダークホール形成
 - ✓ 極限高コントラストで惑星観測
 - ✓ アルゴリズム: Electric Field Conjugation

▶ 恒星、ダークホール位置

▶ 惑星離角

	軌道長半径 ^[7] [AU]	離角 [λ/D] (@10pc, λ = 500nm, D = 4m)
地球	1.0	3.9
木星	5.2	20
海王星	30.0	116

▶ ミンニュー・シー・パニメーク

▶ 恒星、ダークホール位置

				Broad	
		Broad survey	Deep survey		Bioau
瞳直径(SLM	サイズ)[pixel]	256	64	Deep	
コロナグラフ		SPLINE			
瞳面	振幅 [% RMS]	2.0		DM	
初期収差	位相 [nm RMS]	λ/1	.00		-11
ダークホール	・サイズ [λ/D]	内径:3 <i>,</i> 外径:125	直径:10(2ヶ所)	海	王星
ダークホールアルゴリズム Speck		Speckle nulling	EFC		

▶ 惑星離角

	軌道長半径 ^[7] [AU]	離角 [λ/D] (@10pc, λ = 500nm, D = 4m)
地球	1.0	3.9
木星	5.2	20
海王星	30.0	116

[7] NASA Science Solar System Exploration; https://solarsystem.nasa.gov/planets/overview/

地球 木星

◆計算機シミュレーション結果
 > 各モードで想定したダークホールの形成に成功

		初期コントラスト	最終コントラスト
Broad		3.1×10^{-8}	1.2×10^{-10}
Deep	地球	6.3×10^{-6}	3.6×10^{-11}
	木星	1.4×10^{-7}	2.2×10^{-12}

◆計算機シミュレーション結果
▶ 各モードで想定したダークホールの形成に成功

▶ 高コントラスト観測システムテストベッドEXISTの開発

- ▶ 複数タイプのコロナグラフの開発
- ▶ 空間光変調器(SLM)を用いたダークホール技術の開発
 - ✓ 数値シミュレーション
 - Broad survey モード: DMのナイキスト制限を大きく超えたダークホール形成
 - Deep survey モード: 惑星位置で極限高コントラストを達成

