# 近赤外線面分光ユニット SWIMS-IFUの開発

2020/12/2 @可視赤外線観測装置技術WS

櫛引洸佑 (東大天文専攻D1)

細畠拓也、竹田真宏、山形豊 (理化学研究所)、 森田晋也 (東京電機大学)、 本原顕太郎、尾崎忍夫、都築俊宏 (国立天文台)、 高橋英則、小西真広 (東京大学)

# 近赤外線面分光の重要性と難点

1. 強いダスト減光を持つ天体 (e.g. Starburst galaxies, Star-forming region)

2. 高赤方偏移天体 (e.g. Hα(656.3nm) for z~0.5-2.8)

#### 既存面分光装置の問題点

- 狭い視野 (多くがAO使用)
  - VLT/SINFONI 8x8 arcsec<sup>2</sup>で最大
  - 近傍の広がった天体や広範囲観測には不向き
- 狭い波長帯域
  - 近赤外線の1もしくは2バンド程度 (e.g. J, H, K, HK)
  - 近赤外線に存在する複数の輝線を観測するには不十分
    - Paschen series: Paα 1.875μm, Paβ 1.281μm, Paγ 1.093μm
    - Bracket series: Brγ 2.165µm, Brδ 1.945µm
    - Others: Hel 1.08, 1.87, 2.06µm, [Fell] 1.26, 1.64µm, H<sub>2</sub> 1.96, 2.03, 2.06µm

→ 広視野、広波長帯域の近赤外線面分光は未だ切り開かれていないパラメータースペース



### **SWIMS-IFU for SWIMS**

#### **SWIMS**

- TAO 6.5m望遠鏡用の近赤外線撮像分光装置
- 一度の露光で0.9-2.5µm全体のスペクトルを取得できるスリット多天体分光
- 撮像&分光機能は21A-22Bの期間、すばる望遠鏡でPI装置として共同利用





### **SWIMS-IFU for SWIMS**

#### **SWIMS**

- TAO 6.5m望遠鏡用の近赤外線撮像分光装置
- 一度の露光で0.9-2.5µm全体のスペクトルを取得できるスリット多天体分光
- 撮像&分光機能は21A-22Bの期間、すばる望遠鏡でPI装置として共同利用

#### SWIMS-IFUのコンセプト





# SWIMS-IFU仕様

#### イメージスライサーIFU

- SWIMSの一度の分光観測での広い波長帯域
- スライス幅をシーイングサイズに最適化し、広視野

|                | TAO (6.5m)                           | Subaru (8.2m)            |  |
|----------------|--------------------------------------|--------------------------|--|
| 波長             | 0.9-1.45µm (Blue) & 1.45-2.5µm (Red) |                          |  |
| 波長分解能R         | 1000-1500 (Blue) & 800-1400 (Red)    |                          |  |
| 視野             | 16″.6 x 12″.8                        | 13.5″ x 4″.8             |  |
| ピクセルスケール       | 0".126 pix <sup>-1</sup>             | 0".095 pix <sup>-1</sup> |  |
| スライス幅          | 0″.5                                 | 0″.4                     |  |
| スライス数          | 26 (ch-13~-1, +1~+13)                | 12 (ch-6~-1, +1~+6)      |  |
| IFU Throughput | > 70%                                |                          |  |
| Image quality  | < 0.4"                               |                          |  |

# SWIMS-IFU仕様

#### イメージスライサーIFU

- SWIMSの一度の分光観測での広い波長帯域
- スライス幅をシーイングサイズに最適化し、広視野



|                | IAU (0.511)                      | 21                       |                |              |
|----------------|----------------------------------|--------------------------|----------------|--------------|
| 波長             | 0.9-1.45µm (Blue) 8              | & 1.45-2. <sup>!</sup>   | Pan-STARRS, y- | -band image  |
| 波長分解能R         | 1000-1500 (Blue) & 800-14 NGC311 |                          |                | 10 (z~0.017) |
| 視野             | 16".6 x 12".8                    | 13                       | 8.5″ x 4″.8    |              |
| ピクセルスケール       | 0".126 pix <sup>-1</sup>         | 0".095 pix <sup>-1</sup> |                |              |
| スライス幅          | 0″.5                             |                          | 0″.4           |              |
| スライス数          | 26 (ch-13~-1, +1~+13)            | 12 (ch-                  | -6~-1, +1~+6)  |              |
| IFU Throughput | > 70%                            |                          |                |              |
| Image quality  | < 0.4"                           |                          |                |              |

TAO (6 Em)



Pre-optics (PO0-PO2): 光をIFU内へ導き、望遠鏡焦点面像を適切なサイズに拡大

#### Slice-mirror array (S1)

- 26の短冊状(18mm x 0.52mm)平面鏡
- 上から下へCh +13~+1, Ch -1~-13

#### Pupil-mirror array (S2)

中心部分12チェンネルは球面、
 外側14チャンネルは軸外し楕円面

Slit-mirror array (S3)

● 26の球面鏡





170 x 220 x 54 mm<sup>3</sup>に収まるサイズ → MOSU内に保管可能 アルミニウムのみで製作 (PO1レンズ除く) → 冷却下での使用



# 超精密切削加工

nmオーダーの制御精度をもつ加工機による加工

- ミラー間の相対鏡面位置精度 ~ µmオーダー
- 面粗さや面形状などの面精度を高精度に達成
- 組み上げの際の参照面も同時に製作



2020/12/2 瞳ミラーアレイ最終加工 粗削り

2019/10 瞳ミラーアレイ試験加工仕上げ





# **S3: Slit-mirror array**

#### 鏡面精度

面粗さ、面形状共に要求を満たす精度を達成

|                      | Average ± Std | Requirement |
|----------------------|---------------|-------------|
| Roughness RMS [nm]   | 7.4±2.1       | < 10        |
| Shape error P-V [nm] | $169 \pm 32$  | < 300       |



#### ミラー間相対位置精度

< 10µm程度の精度で完成 (測定機の精度は数µm程度) 最終的には光学試験で確認する必要あり





#### 超精密加工

- S2: Pupil-mirror array →まさに今進行中!年内終了予定
- PO0+S1: Slice-mirror array → 2021年1月開始予定
- PO2 → PO0+S1完了後開始予定

#### 組み上げ

- ベースプレートとPO1レンズの製作
- PO0+S1, S2, S3の部分組み上げ試験
- 全ての要素の組み上げは
  2021年4-7月頃に完了予定

#### 性能評価とSWIMSへのインストール

- 2021年内に実験室での性能評価
- 2022年1月以降のSWIMS@Subaruへの インストールを目指す

