近赤外線面分光ユニット SWIMS-IFUの開発

2020/12/2 @可視赤外線観測装置技術WS 櫛引洸佑 (東大天文専攻D1)

細畠拓也、竹田真宏、山形豊 (理化学研究所)、 森田晋也 (東京電機大学)、 本原顕太郎、尾崎忍夫、都築俊宏 (国立天文台)、 高橋英則、小西真広 (東京大学)

近赤外線面分光の重要性と難点

- 1. 強いダスト減光を持つ天体 (e.g. Starburst galaxies, Star-forming region)
- **2. 高赤方偏移**天体 (e.g. Hα(656.3nm) for z~0.5-2.8)

既存面分光装置の問題点

- 狭い視野 (多くがAO使用)
 - VLT/SINFONI 8x8 arcsec²で最大
 - 近傍の広がった天体や広範囲観測には不向き
- 狭い波長帯域
 - 近赤外線の1もしくは2バンド程度 (e.g. J, H, K, HK)
 - 近赤外線に存在する複数の輝線を観測するには不十分
 - Paschen series: Paα 1.875μm, Paβ 1.281μm, Paγ 1.093μm
 - Bracket series: Brγ 2.165μm, Brδ 1.945μm
 - Others: Hel 1.08, 1.87, 2.06μm, [Fell] 1.26, 1.64μm, H₂ 1.96, 2.03, 2.06μm
- → 広視野、広波長帯域の近赤外線面分光は未だ切り開かれていないパラメータースペース

SWIMS-IFU for SWIMS

SWIMS

- TAO 6.5m望遠鏡用の近赤外線撮像分光装置
- 一度の露光で0.9-2.5µm全体のスペクトルを取得できるスリット多天体分光
- 撮像&分光機能は21A-22Bの期間、すばる望遠鏡でPI装置として共同利用

SWIMS-IFU for SWIMS

SWIMS

- TAO 6.5m望遠鏡用の近赤外線撮像分光装置
- 一度の露光で0.9-2.5µm全体のスペクトルを取得できるスリット多天体分光
- 撮像&分光機能は21A-22Bの期間、すばる望遠鏡でPI装置として共同利用

SWIMS-IFUのコンセプト

SWIMSの光学系を変えることなしに、 焦点面に導入するだけで面分光装置へ 切り替える光学ユニット

スリットマスクと同様に保管し、 ロボットアームで焦点面に導入する

SWIMS-IFU仕様

イメージスライサーIFU

- SWIMSの一度の分光観測での広い波長帯域
- スライス幅をシーイングサイズに最適化し、広視野

	TAO (6.5m)	Subaru (8.2m)	
波長	0.9-1.45µm (Blue) & 1.45-2.5µm (Red)		
波長分解能R	1000-1500 (Blue) & 800-1400 (Red)		
視野	16".6 x 12".8	13.5" x 4".8	
ピクセルスケール	0″.126 pix ⁻¹	0″.095 pix ⁻¹	
スライス幅	0".5	0".4	
スライス数	26 (ch-13~-1, +1~+13)	12 (ch-6~-1, +1~+6)	
IFU Throughput	> 70%		
Image quality	< 0.4"		

SWIMS-IFU仕様

イメージスライサーIFU

- SWIMSの一度の分光観測での広い波長帯域
- スライス幅をシーイングサイズに最適化し、広視野

	TAO (6.5m)	Su
波長	0.9-1.45µm (Blue) &	& 1.45-2. ¹ Pan-STARRS, y-
波長分解能R	1000-1500 (Blue)	& 800-14 NGC31 1
視野	16".6 x 12".8	13.5" x 4".8
ピクセルスケール	0″.126 pix ⁻¹	0".095 pix ⁻¹
スライス幅	0".5	0″.4
スライス数	26 (ch-13~-1, +1~+13)	12 (ch-6~-1, +1~+6)
IFU Throughput	> 70%	
Image quality	< 0.4"	

SWIMS-IFU@TAO

SINFONI

·<mark>band image</mark> 10 (z~0.017)

光学系

Pre-optics (PO0-PO2): 光をIFU内へ導き、望遠鏡焦点面像を適切なサイズに拡大

Slice-mirror array (S1)

- 26の短冊状(18mm x 0.52mm)平面鏡
- 上から下へCh +13~+1, Ch -1~-13

Pupil-mirror array (S2)

申心部分12チェンネルは球面、 外側14チャンネルは軸外し楕円面

Slit-mirror array (S3)

● 26の球面鏡

機械系

170 x 220 x 54 mm³に収まるサイズ \rightarrow MOSU内に保管可能 アルミニウムのみで製作 (PO1レンズ除く) \rightarrow 冷却下での使用

複数鏡面の一体加工

- PO0+S1
- \$2
- \$3
- →位置較正負担を軽減

超精密切削加工により 高精度な一体加工を実現 (理化学研究所 先端光学素子開発チームとの 共同開発)

超精密切削加工

nmオーダーの制御精度をもつ加工機による加工

- ミラー間の相対鏡面位置精度 ~ µmオーダー
- 面粗さや面形状などの面精度を高精度に達成
- 組み上げの際の参照面も同時に製作

2020/12/2 瞳ミラーアレイ最終加工 粗削り

2019/10 瞳ミラーアレイ試験加工仕上げ

開発の現状

最終加工が現在進行中

(2020年内完了)

S3: Slit-mirror array

鏡面精度

面粗さ、面形状共に要求を満たす精度を達成

	Average ± Std	Requirement
Roughness RMS [nm]	7.4 ± 2.1	< 10
Shape error P-V [nm]	169 ± 32	< 300

ミラー間相対位置精度

< 10µm程度の精度で完成 (測定機の精度は数µm程度) 最終的には光学試験で確認する必要あり

今後の計画

超精密加工

- S2: Pupil-mirror array →まさに今進行中!年内終了予定
- PO0+S1: Slice-mirror array → 2021年1月開始予定
- PO2 → PO0+S1完了後開始予定

組み上げ

- ベースプレートとPO1レンズの製作
- PO0+S1, S2, S3の部分組み上げ試験
- 全ての要素の組み上げは 2021年4-7月頃に完了予定

性能評価とSWIMSへのインストール

- 2021年内に実験室での性能評価
- 2022年1月以降のSWIMS@Subaruへの インストールを目指す

