小型屈折型補償光学装置CRAOの開発 AOシミュレーションを用いた波面エラーバジェットの評価

京都産業大学 理学研究科M2 坂部健太

小島礼己、樽田順、池田優二(京都産業大学) 大屋真(国立天文台)

目次

1. イントロダクション

- 2. YAOシミュレーション
- 3. 議論
- 4. 今後の予定

1.イントロダクション ~AOの課題~

補償光学(AO)は、望遠鏡には<u>必須</u>の装置

AOの課題

装置の大型化 & 製作コストが膨大

→ 中小型望遠鏡に普及しにくい

1.イントロダクション~CRAO~

開発テーマ
「小型で安価なAO」

開発目標

- 1. 小型化 装置サイズ<A4用紙サイズ
- 2. 安価 装置製作費用 < 500万円

1.イントロダクション~CRAO~

開発テーマ 「小型で安価なAO」

開発目標 1. 小型化 装置サイズ < A4用紙サイズ

2. 安価 装置製作費用 < 500万円

既成の光学素子を利用することで、コストダウン

波面センサ

Thorlabs社 WFS30-14AR 可変形鏡

Thorlabs社 DM140A-35-UM01

1.イントロダクション~CRAO~

開発テーマ 「小型で安価なAO」

小型屈折型補償光学装置 CRAO (Compact Refractive Adaptive Optics)

波面センサ

Thorlabs社 WFS30-14AR

2020/12/2 装置ワークショップ

可変形鏡(DM) SATURN+ TTステージPSH4

レンズを使用し、 ダブルパス光路により 光路を短縮

サイエンスカメラ(SC)

270mm

装置仕様 (北尾 2012)

光学系	透過型
補償方式	Modal- Control w/ closed Loop
波長域	400nm~700nm
動作周波数 (帯域幅)	200Hz
装置視野	30arcsec
限界等級	4mag(V-band)
補 償 波面残差,(RMS)	1350nm→ 315nm
性 能 Seeing	3.0 arcsec→0.8 arcsec

ダブルパスレンズ (DPL)

> 波面センサ(WFS) GE680

CRAO (2020ver.)

SE(第2世代)

390mm

1.イントロダクション ~補償性能~

1.イントロダクション~開発状況~

CRAO開発年表		
2011年度	開発着手	
2012年度	仕様決定	
2013年度	筐体設計	
2014年度	ファーストライト (CRAO1号機)	
2015年度	可変形鏡交換 (CRAO1.5号機)	
2016年度~2017年度	休止	
2018年度~	開発再開	

SATURN & TTステージ

1.イントロダクション~先行研究~

京都産業大学 1.3m反射望遠鏡

1.イントロダクション~先行研究~

1.イントロダクション~先行研究~

WFS、DMなど複数の素子が相互に関係しているため、個々の影響を**実験的に究明することは難しい**

- ユニットごとの影響が分離可能
- ・ 再現性が取り易い

シミュレーションで再現

原因究明

目次

- 1. イントロダクション
- 2. YAOシミュレーション
- 3. 議論
- 4. 今後の予定

2.YAOシミュレーション ~条件設定~

使用シミュレータ:

YAO(Yorick Adaptive Optics)

[F.Rigaut + 2013]

インタプリタ言語Yorickで書かれた AOシミュレータの1つ

リアルタイムに 可変形鏡、波面センサ、PSFの 疑似画像を表示

2.YAOシミュレーション ~大気~

2020/12/2 装置ワークショップ

2.YAOシミュレーション ~条件設定~

Λ	—	
	λ	' / 🔻

WFS 12x12 Shack-Hartmann
DM 40素子 Stacked-Array

制御行列 SVD(特異值分解)

補償方式 Closed-Loop

動作周波数 200Hz

ガイド星(V-band) 1 mag

シミュレーション回数 4000回

(AO動作時間 20s)

望遠鏡口径 1.3m(荒木望遠鏡)

2.YAO ~位相スクリーンの検証~

大気構造関数のAOシミュレータ値と理論値を比較

YAOの位相スクリーンは **理論値と概ね一致!**

2.YAOシミュレーション ~条件設定~

ポイントその2

YAO上でのDM素子配置

実際の素子配置

素子配置が**大きく異なる!!**

2.YAOシミュレーション ~条件設定~

可変形鏡形状測定結果

影響関数(YAO用)

自作プログラムで 変換

2.YAOシミュレーション ~結果~

シーイング3.3"での結果

目標性能(<0.8")が 出ていない

波長[nm]	FWHM["]	WFE(rms)[nm]
400	2.36	
550	2.30	764 ± 377
700	2.04	

シミュレーション結果のPSF@λ550nm

2020/12/2 装置ワークショップ

2.YAOシミュレーション ~結果~

目次

- 1. イントロダクション
- 2. YAOシミュレーション

3. 議論

4. 今後の予定

3.議論 ~エラーバジェット~

AOシステムで起こりうるエラー項目(Hardy,1988)

- 波面測定エラー: $\sigma_{
 m M}$
- AO動作時間遅れによるエラー: $\sigma_{
 m T}$
- 可変形鏡形状再現によるエラー: $\sigma_{
 m F}$
- ガイド星と観測天体の方位誤差: $\sigma_{\!\scriptscriptstyle A}$ etc...

CRAOシステムで考慮すべきエラー式

$$\sigma_{ ext{sys}}^2 = \sigma_{ ext{M}}^2 + \sigma_{ ext{T}}^2 + \sigma_{ ext{F}}^2 \qquad \sigma_{ ext{sys}}^2:$$
システム全体の誤差

3.議論 ~エラーバジェット~

CRAOシステム評価式

$$\sigma_{ ext{sys}}^2 = \sigma_{ ext{M}}^2 + \sigma_{ ext{T}}^2 + \sigma_{ ext{F}}^2$$
 $\sigma_{ ext{sys}}^2$: システム全体の誤差 $\sigma_{ ext{M}}^2$: 波面センサ波面測定誤差 $\sigma_{ ext{T}}^2$: AO動作時間遅れ誤差 $\sigma_{ ext{F}}^2$: 可変形鏡形状再現誤差 $\sigma_{ ext{F}}^2$: 可変形鏡形状再現誤差

 σ_{TB}^2 :WFSの積分時間によってなまる誤差

 σ_{TF}^2 :ループ遅れによる誤差

3. 議論 ~シミュレーションでのエラーバジェット~

エラーバジェットのシミュレーション条件として

- ・ センサーノイズなし $(\sigma_{M} = 0$ と仮定)
- ・ 大気を上空10kmの一層モデル

理想的なCRAOモデルでのエラーバジェットの解析を実施

CRAOシステム評価式 $\sigma_{\mathrm{sys}}^2 = \sigma_{\mathrm{TB}}^2 + \sigma_{\mathrm{TF}}^2 + \sigma_{\mathrm{F}}^2$

2020/12/2 装置ワークショップ

3.試験に ~シミュレーションでのエラーバジェット~

波面誤差 σ^2 の詳細な原因分析をシミュレーションで実施

Zernike多項式で波面残差を展開

波面残差マップ σ_{WFE}^2

3.詳二へ ~シミュレーションでのエラーバジェット~ シミュレーション解析結果

3.議論 ~理想的なモデルの検証~

理想的なDMとCRAO搭載DMでの波面残差の違い

3.議論 ~理想的なモデルの検証~

理想的なDMでのシミュレーション

3.議論 ~理想的なモデルの検証~

理想的なDMでのシミュレーション

4. まとめ

- 1. 京都産業大学では、次世代AOや中小型望遠鏡で重要となる技術開発の一環として 小型で安価なAO(CRAO)の開発を行っている
- 2. AOシミュレーション結果、神山天文台サイトでCRAOを用いた場合到達星像は FWHM~2.0-2.4"であり**実機のオンスカイ結果と矛盾ない結果**が得られた
- 3. 補正後の波面誤差量の解析から**時間遅れ誤差**が**支配的**であることが分かった
- **4. SeeingとWFEは一対一対応しておらず、**帯域幅を大きくするのみでは、 seeingの改善は限定的であることが判明した
- 今後は、
- SeeingとWFEの関係について詳細な調査
- Seeing<0.8"を達成できる設計パラメータの探索
- 設計パラメータに基づくCRAOの改良