

複屈折結晶を用いた 極限補償光学用波面センサ

〇津久井遼(京都大学 D1)

木野勝、山本広大、栗田光樹夫(京都大学)、松谷晃宏(東京工業大学)

極限補償光学と波面センサ

せいめい望遠鏡を用いた系外惑星の直接撮像のため、
 極限補償光学装置SEICAを開発する

広レンジ

高精度

高頻度

- 極限補償光学への要求:
 波面精度 80 nm (SR = 0.9 @H-band)
- 波面センサへの要求:
 - 測定レンジ ~800 nm (= 1λ)
 - 測定誤差 < 40 nm (RMS)
 - 測定頻度 6.5 kHz
 - 測定点数 ~500点
 - 測定波長 800+/-100 nm

波面センサの選択

• 高頻度(低S/N)で高精度を目指すなら<u>位相測定タイプ</u>が有利

	幾何測定	位相測定
測定方式	波面傾斜 ↓(積分演算) 波面の形	波面の形そのもの
例	 Shack-Hartmann Modulated Pyramid 	・干渉計 ・Fixed Pyramid
測定点間の 誤差伝播	あり	なし
		高頻度 高精度

背景技術:点回折干渉計

- 位相測定タイプの一種
- ピンホールにより参照波面を生成し、被検波面と干渉させる

測定レンジはλ/2程度

背景技術:点回折干渉計

- 位相測定タイプの一種
- ピンホールにより参照波面を生成し、被検波面と干渉させる

• 測定レンジはλ/2程度 不足

背景技術:位相シフト干渉法

- ◆ 参照波面の位相を±120 degずつシフトさせる
 → 3種類の干渉像をつくり、縮退を解く
- 1λの測定レンジを実現

- 「位相シフト干渉法」と「点回折干渉計」の組み合わせ
- ピンホール素子を複屈折結晶で構成

	素材	屈折率 (@ 800 nm)
複屈折結晶	TiO2 ルチル結晶	$n_o = 2.52, n_e = 2.79$
ピンホール部	Nb2O5	n = 2.28

• 複屈折性を利用して、<u>偏光方向によって異なる位相差</u>を生む

光路	位相差
透過, 偏光方向x	$\frac{2\pi}{\lambda}(n-n_o)d \simeq -120 \text{ [deg]}$
透過, 偏光方向y	$rac{2\pi}{\lambda}(n-n_e)d\simeq -240~[{ m deg}]$
反射	0 [deg] (鏡面反射)

• 複屈折性を利用して、<u>偏光方向によって異なる位相差</u>を生む

光路	位相差
透過, 偏光方向x	$\frac{2\pi}{\lambda}(n-n_o)d\simeq -120~[{\rm deg}]$
透過, 偏光方向y	$\frac{2\pi}{\lambda}(n-n_e)d\simeq -240~[\text{deg}]$
反射	0 [deg] (鏡面反射)

• 複屈折性を利用して、<u>偏光方向によって異なる位相差</u>を生む

光路	位相差
透過, 偏光方向x	$\frac{2\pi}{\lambda}(n-n_o)d\simeq -120~[\text{deg}]$
透過, 偏光方向y	$\frac{2\pi}{\lambda}(n-n_e)d \simeq -240$ [deg]
反射、両偏光	0 [deg] (鏡面反射)

本方式の光学系レイアウト

ピンホールサイズの最適設計

- ・測定誤差はピンホールサイズに依存する
 ピンホール大 → 測定誤差大
 モジネール大 → 測定誤差小
- ・シミュレーション(FFT/IFFT)により測定誤差を見積もった
 → 直径30 umに決定

加工プロセス

(非公開)

(非公開)

(非公開)

まとめ

- 補償光学用波面センサとして、複屈折結晶による点回折干渉計
 を開発中
- シミュレーションにより、最適なピンホールサイズを決定
 - そのほか、色収差の影響や測定レンジなどをシミュレーションで確認
 - 結果を論文投稿
- 東工大にて素子製作
 - 条件出しを進行中
- 今後:
 - 本番の加工
 - 波面測定の実証
 - 補償光学への搭載