次世代観測装置用の新しい回折格子 IX 岡本 隆之2,山形 豊1,佐々2 昇 真木夫4,山本和也4,岡田真4,仲内 田中 壱7、服部 尭7、 和人的 尾崎 と学研究所 光量子工学研究セ ²元理化学研究所研究員 ス (株) 技術開発部 3 豊田工業大学 工学部 大阪大学 理学研究科, ⁶宇宙航空研究開発機構 宇宙科学研究所 国立天文台 ハワイ観測所, 国立天文台 TMT推進室

第11回 可視赤外線観測装置技術WS2022

京大理 セミナーハウス 2022年12

2022年12月21, 22, 23日

Littrow prism

Volume phase holographic (VPH)グリズム Quasi-Bragg (QB) grating

Surface mirror QB immersion grating

Quasi-Bragg grating

近-中間赤外線 Geグリズム

Trapezoid grating

Reflector facet transmission (RFT) grating

溝の深さ

ALIS用VB gratingの開発 月極域探査計画(LUPEX) 月の水資源が将来の持続的な宇宙探査活動に 利用可能か判断するための探査

Advanced Lunar Imaging Spectrometer (ALIS)

シリコンを鋳型としたテンパックス ガラスのVB gratingの製作方法

鋳込む温度を1100℃から1,000℃に下げる ためにホットプレスの実験を実施。

金属技研 ホットプレス装置評価結果 NALUX (外観)

∧ /田川

A A M

金属技研の処理後 (ワーク周辺部を丸く

ウエハー斜め上方からのSEM像

金属技研 ホットプレス対策案

NALUX

Volume binary (VB) and trapezoid gratings for TMT WFOS

M 82 (NGC 3034)

FOCAS (B, V, Ha)

Subaru Telescope, National Astronomical Observatory of Japan

Hickson Compact Group 40 Subaru Telescope, National Astronomical Observatory of Japan CISCO (J & K') January 28, 1999

Copyright@ 2000 National Astronomical Observatory of Japan, all rights reserved

WFOS: Wide Field Optical Spectrograph

- Telescope Field of view Wavelength range Resolving power Collimator f. length Camera lens f. length : 600 mm Pupil in spectrograph : 300 mm Detector format
- : TMT (Thirty Meter Telescope)
 - $: 8.3 \times 3 \text{ arcmin}^2$ (1,086 × 392 mm²)
 - : 310 600 nm (Blue), 550 1000 nm (red)
 - : R~1,000, ~5,000, ~8,000 (0.75" Slit)
 - : 4,500 mm

 - : 12K × 16K

Gratings of WFOS

Item [g/mm] **B1210 B**2479 **B2700 B**3600 **R680 R1392 R1520** R2052

Peak Wave Λ [nm] [µm] 393 0.83 0.40 409 0.37 494 0.28 374 1.47 736 0.72 722 0.66 883 0.49 657

AOI* 15.9° 32.3° 44.0° 44.3° 16.6° 32.0° 44.3° 44.4°

Clear Aperture $[mm^2]$ 310x320 310x370 310x430 310x430 310x320 310x370 310x430 310x430 * Angle of incidence

VB Grating of High Dispersion

VB Grating of High R2052

Nanorulerの概念図

Nanorulerによって回折格子の 透過型回折格子 パターンを描画 https://www.plymouthgrating.com

球面結像透過型 回折格子

高分散VB grating (R=5,000)

RCWA by Dr. Okamoto

高分散R2052 VB grating (R=5,000)

- AOI=39.4°, L&S=68:32
- t=1.39µm, Aspect ratio=1:8.6

 $\theta = \sin - 1(0.682/0.4873 - \sin 44.4) = 44.4$ 0.4873*cos 44.4=0.348

RCWA by Dr. Okamoto

RCWA by Dr. Okamoto

K band用Trapezoid gratingの開発

レプリカ

3/10,2022 シリコン鋳型5/17,2022

	最適回 折次数	Eff. [%] (λ-λ [μm])	開発状況
Volume phase holographic (VPH) grating	1 <mark>次</mark>	$\sim 90 \rightarrow \sim 100$ (0.32~2.4)	感光性樹脂のVPHグリズムを8.2mすばる 望遠鏡のFOCASやMOIRCS用等を開発。 帯域幅が狭く、マルチスリットモードの場 合に視野中心から離れたスリット位置の効 率低下が問題。
LightSmyth社の 透過型回折格子	1次	~ 98 (0.4~2.4)	MOIRCS高分散グリズムを開発 (J, H band VPHグリズムの後継)。
Volume binary (VB) grating	1次~	~ 95 (0.2~1000)	ALIS用、MOIRCS K band VPHグリズム の後継用に石英VB gratingを開発。 TMTのWFOS用にL:S=55:45のVB grating の効率計算。
Trapezoid grating	1次~	~ 98 (0.2~1000)	月極域探査用にテンパックス ガラスの VB/Trapezoid gratingを開発中。 TMTのWFOS用にシリコンを鋳型にした Trapezoid gratingを開発中。