Shack-Hartmann光学系を用いた 大気乱流分布測定 - すばる望遠鏡でのオンスカイ試験 -

大金 原 (東北大学, D3) 共同研究者:大野良人²,美濃和陽典²,秋山正幸¹,大屋真²,寺尾航暉²,赤澤拓海¹,穂満理生¹ 1東北大学,2国立天文台

2022.12.21, 第11回可視赤外線観測装置技術ワークショップ2022

Power spectrum of atmospheric turbulence 2/20

Log turbulence strength, C²

Kolmogorov power spectrum

$$\Phi_N(f) = 9.7 \times 10^{-3} |f|^{-11/3} C_N^2 \text{ [m^3]}$$

- $C_N^2(h)$: atmospheric turbulence profile
 - Site variation
 - Seasonal variation
 - Day-night variation
 - Tens-of-minutes variation

Wind shear

Turbulence profiling for AO w/ multiple GS 3 /20

- Laser Tomographic AO (LTAO)
 - Multiple LGS measurement around target
 - Atmospheric tomography
 - A few, low-independent measurement
 - Turbulence profile as prior-information

- Ground Layer AO (GLAO)
 - Precise ground layer turbulence profile for performance simulation/evaluation

Turbulence profiling project

4 /20

thickness~200mm, weight~100kg including baseplate

Ground layer profiling: SLODAR

- Slope detection and ranging (Wilson+2002)
- Principle
 - Common measurement of 2 WFSs
 - Measure spatial correlation of phase distortion between 2 stars
- Specification
 - Height resolution = subaperture size / star separation
 - Maximum hight = telescope size / star separation

Higher layer profiling: SH-MASS

- Shack-Hartmann multi aperture scintillation sensor (Ogane+2021)
- Principle
 - Intensity pattern by Fresnel diffraction
 - Measure spatial correlation of intensity
- Specification
 - Height resolution ~ a few km
 - Minimum height ~ 0.5 km
- Limitation
 - Fine (~cm) spatial sampling is needed

Turbulence profiler design concept

- Measurement condition
 - measurement SNR \rightarrow larger than 5
 - separation of star pair \rightarrow 3-5 arcmin
 - availability of star pair at any time

7 /20

Optimal sub-aperture size is 2.0cm. \rightarrow Only part of the Subaru's pupil is used.

SH-MASS 1.20.1 cesbouse 0.8 Normalized 0.6 0.2 $0.0\frac{1}{2^{-1}}$ Turbulence altitude [km] 120 140 160 100 80 180 Altitude [m]

Turbulence profiler optical design

	Design value	Note
ements	66 x 66 (15 x 15)	when using all the lens
size	2 cm	on primary mirror
nit of subaperture	7.55 arcsec	at 600nm
FoV	25 arcsec	
g	2.5 arcsec/pix	
xels per subaperture	10 pix	
tal pixels	660 pix (150 pix)	when using all the lens
	200 fps (800 fps)	when reading 1k pix (2
	6.5 um	*1
se	1.6 e/pixel	RMS value, *1
	82%	at 589nm, *1

*1: Catalog value of Hamamatsu ORCA-Flash4.0 V2

FY2020 **Turbulence profiler mechanical design** 9 / 20

Wavefront sensor: wavefront sensing of 1.4x1.4m pupil region with 66x66 division, 3pix/spot, 25arcsec/subap, 2kx2k pixels

Pupil camera: check pupil to match pupil between the two WFSs, Φ 3m FoV, 2kx2k pixels

Focus adjustment mirror: adjust focusing of the target

Pupil adjustment mirror pair: define Φ 3m pupil to introduce collimator

Focus camera: check acquisition and focusing of the target, 10x10 arcsec FoV, 1kx1k pixels

Pickoff mirror: pickoff target at 1.5-2.5 arcmin from the telescope optical axis

Nov.2021-Apr.2022 Laboratory assembly

- Positioning jigs to place each mechanical component
- Base parts to match height of optical component
- Jigs and base parts are manufactured by Subaru machine shop and Misumi

Nov.2021-Apr.2022 Laboratory alignment

- Rough alignment with straight laser and alignment cones
- Precise alignment with detector image

11/20

Pupil camera

*metal wire on pupil for simulating telescope spider

Wavefront sensor

Jun,Nov 2022 **Installation to Subaru Telescope**

- Align two WFSs on baseplate
- Attach pickoff mirror stages
- Crane the system to insert in front of the AG/SH layer
- Align to telescope optical axis with positioning pins
- Fix the system with metal wires and strong magnets

12/20

Jun,Nov 2022 Alignment after installation

- Propagate laser beams from NsOpt to NsIR
- Rotate telescope image rotator
- Check two laser spots rotate along the circle.

Nov. 2022

On-sky test with Subaru Telescope

- November 12th, 2022 (First half night)
 - Object acquisition test
 - object: Altair (Rmag=0.6)
 - Profiling data acquisition
 - object: HD11727, *56And

Focus camera

Obtained Shack-Hartmann data

GIF animation of background-subtracted image

120-sec continuous image

- 80Hz (800 x 800 readout)
- 230Hz (512 x 512 readout)
- 350Hz (256 x 256 readout)

Temporal statistics of spot brightness

- Spot brightness defined as central 25x25 pixels in sub-aperture
- Spot brightness time series for 15x15 spots
- Temporal mean/variance/covariance calculated

Scintillation index

one spatial frequency

combination of two spatial frequencies

17/20

$$s_{X} = \operatorname{Var}\left[\frac{I_{X}}{\langle I_{X} \rangle}\right] = \frac{\operatorname{Var}[I_{i}] + \operatorname{Var}[I_{j}] + 2\operatorname{Cov}[I_{i}, I_{j}]}{(\langle I_{i} \rangle + \langle I_{j} \rangle)^{2}}$$

$$s_{XY} = \operatorname{Var}\left[\frac{I_{X}}{\langle I_{X} \rangle} - \frac{I_{Y}}{\langle I_{Y} \rangle}\right]$$
$$= s_{X} + s_{Y} - 2\frac{\operatorname{Cov}[I_{i}, I_{k}] + \operatorname{Cov}[I_{j}, I_{k}] + \operatorname{Cov}[I_{i}, I_{l}] + \operatorname{Cov}[I_{j}, I_{l}]}{(\langle I_{i} \rangle + \langle I_{j} \rangle)(\langle I_{k} \rangle + \langle I_{l} \rangle)}$$

Covariance up to \sim 5-10 cm scale

Overall scaling due to exposure time

Turbulence profile reconstruction

- Profile reconstruction by fitting model with 6-layer turbulence between 1km and 20km above
- Known
 - Observed spatial frequency pattern determined by normal/ differential aperture
- Assumption
 - Kolmogorov turbulence
 - Weak perturbation
 - Fresnel propagation

consistent btw WFS1 & WFS2!

1e-12

turbulence strength [m1/3]

turbulence strength $[m^{1/3}]$

18/20

Discussion / Future work

- SH-MASS
 - Calibration with CFHT MASS-DIMM measurement
- SLODAR
 - For precise ground layer turbulence profile
- Report on the next ASJ meeting
- Next engineering observation
 - Mar. 8, 2023

Summary

- Purpose: Turbulence profile for future AO system at Subaru telescope
 - Prior information of atmospheric tomography in LTAO
 - Performance simulation/evaluation for GLAO
- Method: Development of new turbulence profiler
 - SH-MASS for high layer turbulence
 - SLODAR for ground layer turbulence
- Result
 - Development of turbulence profiler is done.
 - First light on November 12, 2022 (finally!)
 - Consistent SH-MASS result between dependent two wavefront sensors

