Wave-length Dependence in Position Angle of Interstellar Polarization

--- Application of Two-component Model to HBS Observations ---

関 宗蔵(東北大)

2002.09.25 OAOUM

Definitions

_

Stokes Parameters & Derived Relations

$$q_{obs} = q_1 + q_2$$
 $u_{obs} = u_1 + u_2$
 $\tan 2(\theta_{obs} - \theta_1) = r \sin 2\phi / (1 + r \cos 2\phi)$
 $v_{obs} = (e_2 / P_2) P_{obs}^2 G$

where

$$r = P_2 / P_1$$

$$\phi = \theta_2 - \theta_1$$

 e_i = phase shift in component #i

4

$$G = -r \sin 2\phi / (1 + r^2 + 2r \cos 2\phi)$$

Geometry dependent factor

$$d\theta / d\lambda = -0.5 \text{ G } d \ln r / d\lambda$$

$$\lambda_{\text{max},2} / \lambda_{\text{max},1} = \exp[-(d\theta / d \ln \lambda) / K \text{ G}]$$

$$P(\lambda) = P_{\text{max}} \exp[-K \ln^2(\lambda_{\text{max}} / \lambda)]$$

HBS Observations @OAO/DAO

Three among seven stars observed are chosen for further analysis:

HD	SP	$\mathbf{E}(\mathbf{B}\text{-}\mathbf{V})$	d(kpc) l b	Vmag
22253 B	0.5	0.61	0.74	144 +	1 6.79
24431 O	9 -	0.68	0.77	149 –	6.73
2 OriA ()9.5	0.19	0.54	186 –	6 5.17

(Sakurai, Akitaya, Hirakata, Kawabata, Nakayama, Matsumura, Hamasaka, Hirata, & Seki 2001)

Results HD22253

P max(%) max(
$$\mu$$
) (°)
obs 1.80 ± 0.10 0.50 ± 0.03 120 ± 2

comp# 1 2.68 ± 0.15 0.65 ± 0.01 117

comp# 2 1.15 ± 0.16 0.90 ± 0.01 201.9 ± 0.8

sq= 1.080

=84.9 (°) d /d =6.0 (deg/ μ)

max, 2/ max, 1 = 1.38

HD24431

P max(%) max(
$$\mu$$
) (°)
obs 2.15 ± 0.10 0.50 ± 0.03 116 ± 1
comp# 1 3.23 ± 0.33 0.63 ± 0.02 113
comp# 2 1.30 ± 0.34 0.82 ± 0.02 198.3 ± 1.3
sq= 1.077

- =85.3 (°) d /d =4.8 (deg/ μ)
- max,2/ max,1 = 1.30

-

Theta 2 Ori A

```
P max(%) max(\mu) (°)
obs 1.03 ± 0.05 0.76 ± 0.02 100 ± 4

comp# 1 0.36 ± 0.02 0.42 ± 0.01 57.6 ± 5.1

comp# 2 1.07 ± 0.05 0.77 ± 0.02 110

sq= 0.925
```

- = 52.4 (°) d /d = 25 (deg/ μ)
- max,2/ max,1 = 1.83

Geometry Factor G

G, a measure of the amount of change in the IS Magnetic Field direction, can be estimated with max,1/ max,2 and d /d ln :

HD22253: G = -0.159

HD24431: G = -0.156

Theta 2 Ori A: G = -0.358

Martin and Campbell(76) determined
 G values for 62 stars from observations of circular polarization.

(Stokes parameter v=V/I in Slide#3), and derived for

■ HD22253 $G=-0.73 \pm 0.18$ HD24431 $+0.45 \pm 0.18$ @ 0.37μ .

- The difference in G from ours might be due to the strong dependence on wavelength.
- They also found a statistical tendency that
 G ~ -0.5

for stars within a few hundred parsecs. For theta 2 Ori A, the G factor derived from our model is well consistent with Martin's.

Depolarization Factor, D

The ratio r (=P₂/P₁) is calculated by using derived values for G and as follows:

```
r =0.37 (HD22253)
0.36 (HD24431)
2.86 (Theta2 Ori A)
```


D P()/P(0) is calculated with known values for r and by the formula

$$D = \sqrt{(1 + r^2 + 2r\cos 2\phi)} / (1 + r)$$

Future Works

- The effect due to the intrinsic polarization:
 Monitoring of temporal variation
- More samples.
- Calculation of V/I () with PI () and Pc() and derivation of G with it:
 Critical for examination of the difference in Gs found in the present study and for investigation of IS/CS circular polarization.