

光赤天連シンポ2015

惑星間スペース赤外線望遠鏡 EXZIT計画

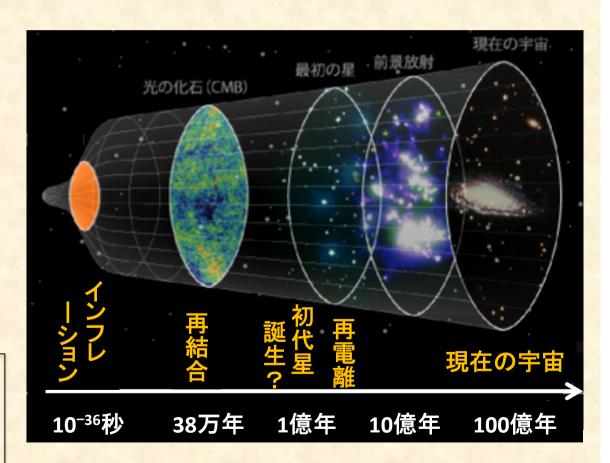
関西学院大学 松浦 周二
CIBER/CIBER-2 collaboration
EXZIT検討チーム
ソーラーセイルWG

宇宙赤外線背景放射の観測

宇宙進化研究の重要課題

初代天体や再電離期の観測

宇宙初期の紫外線



赤方偏移

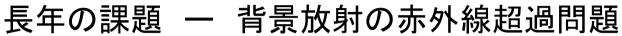
近赤外線宇宙背景放射 CIB: Cosmic Infrared Background

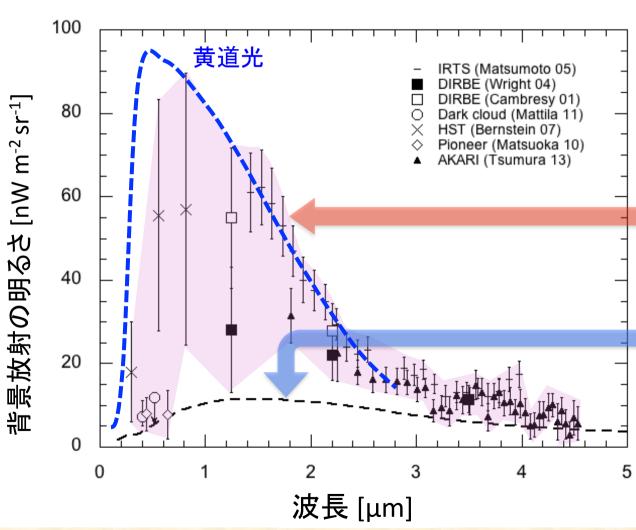
個別検出不可の小天体 → 積算光を捉える

アクシオンなどのダークマター粒子の崩壊光子の探索としても重要

これまでのCIB観測

- 「あかり」衛星 2006-2011年
- ロケット実験CIBER: Cosmic Infrared Background ExpeRiment 2009年2月, 2010年7月, 2012年3月&2013年6月





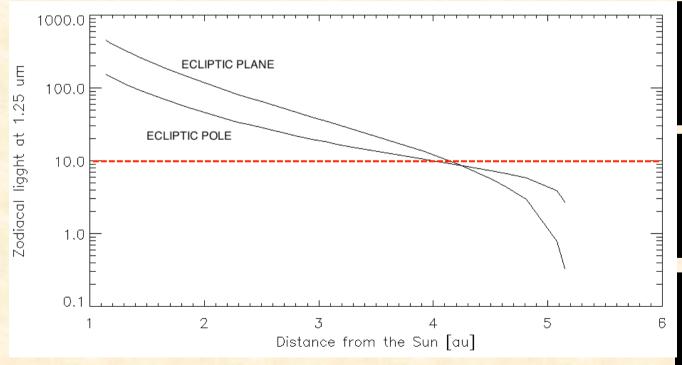
CIB観測結果

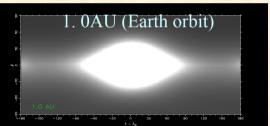
超過は宇宙初期に起源をもつか?

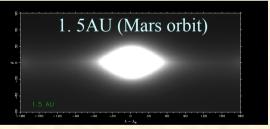
測定された 背景放射の明るさ

深刻な差

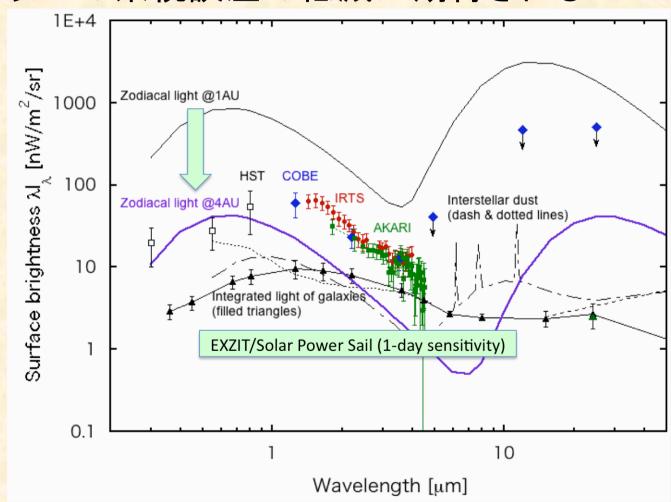
系外銀河の積算 (既知の放射)


黄道光の影響を いかに除去?



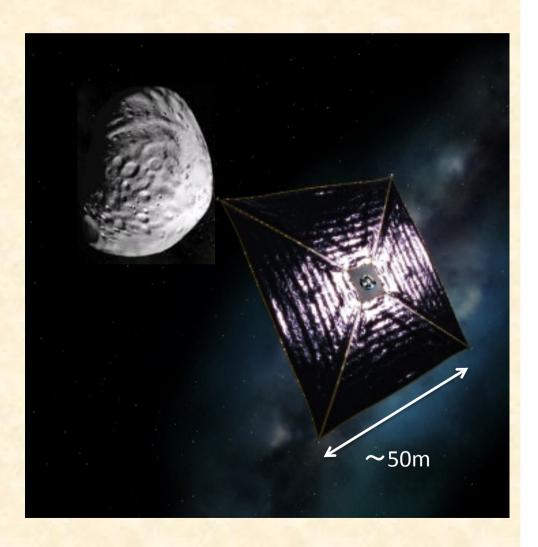

黄道光の日心距離変化


- ・ 惑星間ダスト分布モデルからの予測 小惑星帯以遠(>3AU)では一桁以下に低減
- 黄道光観測によるダスト分布や組成の研究



EXZIT - 惑星間ダスト雲からの脱出

・ 小惑星帯以遠でのCIB観測では地球軌道と比べて、 一桁以上の系統誤差の低減が期待される.



ソーラー電力セイル(SPS)

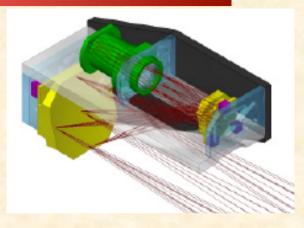
- ・ 探査工学/惑星科学/天文学 理工学総合ミッション
- トロヤ群小惑星探査 子機着陸、その場分析
- ・ 到着までのクルージング期 に惑星間空間の科学観測 (EXZITは搭載機器の1つ)
- ・ 2020年代打上げ目標
- ISAS戦略的中型ミッションDSにて3候補の1つに選定
- ・ 探査機システム要求審査 SRRへ向けて検討継続

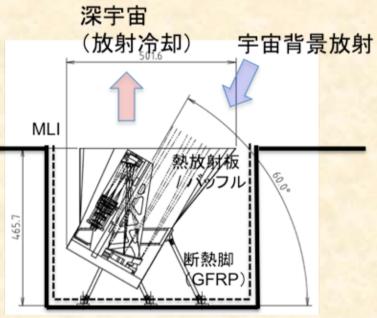
ミッション シーケンス

観測

くサイエンス>

- I. クルージングフェーズ
 - 宇宙赤外線背景放射の観測
 - ・惑星間ダストのその場計測
 - ・ガンマ線バーストの観測
 - ・その他、惑星間磁場の計測など
- Ⅱ. ランデブーフェーズ
 - ・トロヤ群小惑星の観測
 - ・トロヤ群小惑星の試料分析


- <スケジュール例>
- -2023年:打上げ
- -2025年:地球スイングバイ
- 2029年: 木星スイングバイ
- 2037年:トロヤ群小惑星到着 子機の着陸・試料採取・その場分析
- -2039年:トロヤ群小惑星出発
- -2049年:地球帰還



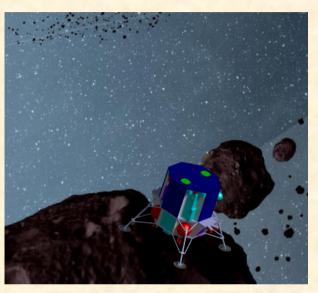
EXZITの仕様

EXZIT spec	Vis cam	Vis-NIR	MIR (option)			
波長	0.4-0.6 μm	0.6-2.5 μm	5-10 μm			
λ/Δλ	3 30		20			
光学系	Gregorian 10cm 反射+屈折光学系 焦点面LVF搭載 分光撮像装置					
FOV	3 x 4 deg	10' x 4 deg	10' x 4 deg			
検出器	HgCdTe	HgCdTe 128^2				
Pixel FOV	0.5' x	2' x 2'				
冷却方式	放射冷却					
検出器温度	< 90 K		< 40 K			
望遠鏡温度	< 140 K		< 70 K			
検出限界 (1day, 3σ)	$\lambda I_{\lambda} \sim 1 \text{ nWm}^{-2}\text{sr}^{-1}$ CIB S/N > 100					
サイズ	~400^3 mm³ (シールド除く)					
重量	10	10 kg 約10kg增				
データ量	~1MB / day					

探査機 I/F



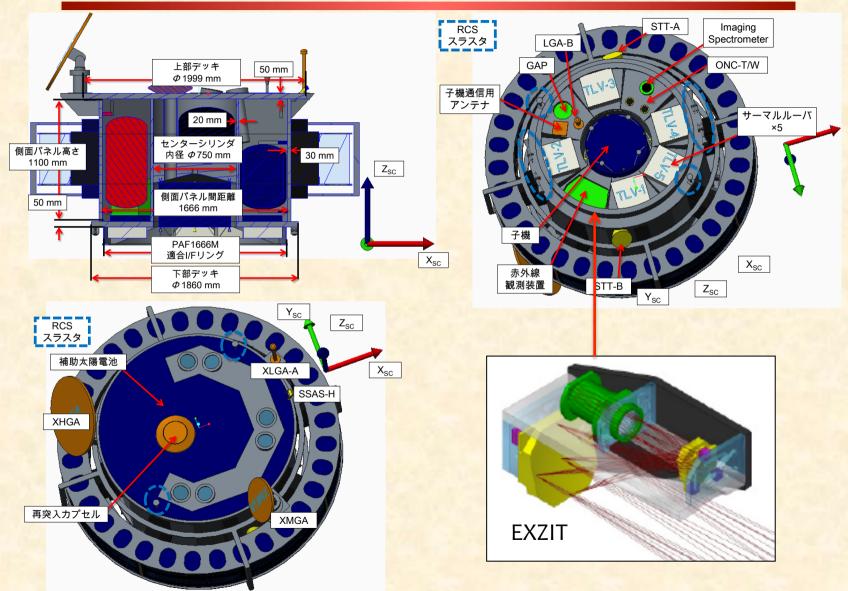
SPS探査機のシステム検討



探査機システム

- ・ システム要求審査へ向け、年度内に システム担当メーカーとの詳細検討完了
- 科学観測機器とのI/F
 赤外・ガンマ線天文観測
 小惑星リモート観測
 ダスト&プラズマ計測

- DLRとの共同検討
- ・ サンプラー, 質量分析器
- その場分析機器



光赤天連シンポ@国立天文台三鷹 2015. 9. 15

探查機機器配置

SPSによる観測の課題

探査機スピンの軸変動による、ポインティング 精度の悪化

• 反太陽面からのイオンエンジン廃熱による, 熱放射迷光,温度安定性の問題

- ・データ通信量の制限
 - 深宇宙~地球間距離
 - HGアンテナ指向安定性

SPS/EXZITの開発状況

EXZITシステムI/F検討(~2016)

- ・ 機器温度要求に対するシステム成立性
- ・ イオンエンジンXeガスによる光学素子スパッタリングの影響
- ・ 諸課題の改善検討

EXZIT要素開発(~2016)

- 分光フィルター(LVF)
 - CIBER-2搭載用近赤外LVFの試験, 中赤外LVFの試作
- 検出器
 - CIBER-2搭載検出器(HAWAII-2RG)の特性試験中

プロジェクトスケジュール(案)

2016 プリプロジェクト, 2017 第一次設計, PFM開発

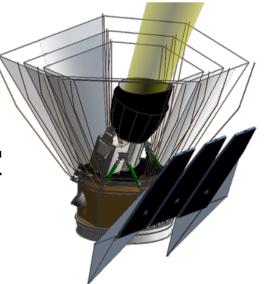
2018 本設計, 2019 FM製作, 2020 試験

EXZITの意義

- CIBER-2(日米韓), NISS(KASI), SPHEREx(NASA)など, 2010後半~2020前半は 国内外の小型計画による「CIBゆらぎ」の観測 が大きくすすむ.
- CIB絶対値問題は、2020年代に積み残される.

- EXZITは、CIB絶対値観測の決定打
- エ学,惑星科学,天文学が一体となり推進
- 新たな天文サイトとしての惑星間空間の開拓

SPHEREX


NASA Explorers Program, Astrophysics Small Explorer Mission PI Jamie Bock (Caltech/JPL)ほか CMB関係者中心

可視近赤外線(波長0.8-5 μ m, R=40)全天分光サーベイ

- 宇宙論 銀河大規模構造, 非ガウス性・インフレーション検証
- 銀河形成と進化 CIB分光測定, ダークエイジから現在まで
- ・ 水と生命の起源 銀河系内天体H2O氷サーベイ(R=150)

現状

- KASI(韓国)参加表明,日本の参加協議中
- 2015年6月 3提案が第2段階Phase-Aに選定
- 概念設計(Phase-A study)開始
- 2017年までに最終選定, 2020-21年打上げ

SPHEREx 宇宙論パラメータ決定

- 銀河SEDフィット(特に1.6µmバンプ)による大規模構造観測
- 非ガウス性 f_{NL} , 原始密度ゆらぎスペクトル n_s , α_s , 曲率 Ω_K
- 全天分光サーベイは、特に、統計量と赤方偏移精度の両方が重要な f_{NI} で優位性
 - High-z観測が重要な $\Omega_{\rm K}$ やDark energyではEUCLIDが優位

1σ errors		Bispec	PS + Bispec	EUCLID	Current
$f_{ m NL}^{ m loc}$	0.87	0.23	0.20	5.59	5.8
Tilt $n_s (\times 10^{-3})$	2.7	2.3	2.2	2.6	5.4
Running α_s (×10 ⁻³)	1.3	1.2	0.65	1.1	17
Curvature $\Omega_K \ (\times 10^{-4})$	9.8	NC	6.6	7.0	66
Dark Energy FoM = $1/\sqrt{\text{DetCov}}$	202	NC	NC	309	25

SPHEREx 日本の参加可能性

- CMB含む宇宙論分野
- CIB含む銀河形成論分野
- 全天分光マップあらゆる分野にとって貴重なデータベース
- TMTやSPICA稼働前, 2020年代前半の光赤外天文学 に重要なミッション
- ・ 日本の参加
 - 2016年半ばCSR前が最後の機会(2015年内か?)
 - ハードウェア貢献はやや難しいが、データ解析や 周辺機器、人的寄与などについては可能