WFIRSTとすばる望遠鏡を使った 宇宙再電離期の超新星探査

守屋 尭 (国立天文台)

Transient survey in WFIRST

- Main science driver: Type Ia SN cosmology
 - every 5 day for 2 years
 - 30 hours/visit (imaging + IFU spectra)
 - 2700 SNe la in total

What WFIRST wants from ground telescopes

- low-redshift SNe Ia (pre-survey)
 - 800 SNe la at z<0.1
- photo-z for candidate selection
- coordinated observations not required
 - IFU for spectroscopy
 - better to have them
 - color selection
 - LSST field?

Science with Subaru

Supernovae at the reionization era and beyond with Subaru/HSC

Superluminous supernovae (SLSNe)

- a new member of SN family
 - started to be discovered from ca. 2005
 - bright and blue

How can SNe become superluminous?

- large production of 56Ni (more than 5 Msun)
 - pair-instability supernovae (PISNe)
 - explosions of stars between ~150 Msun and ~250 Msun
 - only exist in metal-poor environment (Z < ~ Zsun/3)
 - first massive stars!

How can SNe become superluminous?

- interaction between SN ejecta and dense CSM
 - ~ 10 Msun CSM required
 - pulsational pair-instability
 - or other mechanisms

time, days

200

2×107

Woosley et al. (2007)

300

UBVRI

3×107

100

107

time, sec

How can SNe become superluminous?

- magnetars
 - rapidly-rotating strongly-magnetized neutron stars
 - huge rotational energy can be emitted with a timescale of ~ 10 days

$$E_p = \frac{1}{2} I_{\rm NS} \Omega_i^2 \simeq 2 \times 10^{52} P_{\rm ms}^{-2} \text{ erg}$$
$$t_p = \frac{6 I_{\rm NS} c^3}{B^2 R_{\rm NS}^6 \Omega_i^2} \simeq 4.1 \times 10^5 B_{14}^{-2} P_{\rm ms}^2 \text{ sec}$$

What SLSNe tell us?

- massive star population
 - SLSNe are from massive stars
- massive stars preferentially formed at high-z?
 - reionization
 - are there PISNe?
 - synergy with GW astronomy

P_{orb} (d)

1.1

2.0

2.5

56

t = 2600 Myr

ZAMS

TAMS/ He-star

BH

Merger

BH+BH

SN/GRB

Cosmology with SLSNe

- possible relation between peak luminosity and decline rate
 - like in Type Ia SNe
 Inserr

• Hubble diagram and constraint on the dark energy equation of state

Current highest-redshift SLSN

- z = 3.9 (Cooke et al. 2012)
 - with CFHT/MegaCam
 - redshift from the host galaxy

z<6 with Subaru (optical)

- HSC SSP can reach z~4
 - from this November
 - only two SLSN (candidates) at z>2 are currently known
 - first SNe at z>2 with spectroscopic confirmation

z<6 with Subaru (optical)

Tanaka, Moriya, & Yoshida (2013)

NIR transient survey

Tanaka, Moriya, & Yoshida (2013)

How to confirm the SNe at the reionization era

- spectral observations for all candidates are difficult
 - faint (~26 mag in NIR)
- host galaxies are too faint they will be "hostless"
 - no photo-z

How to confirm the SNe at the reionization era

- if we have very deep z band from HSC at the same time
 - high-z SNe will not be detected in z band
 - high-z SNe will be detected as "z-drop" hostless SNe
 - observe the same field as the NIR survey to find "z-drop" SNe
- 27 mag in z band (~ 11 hours for S/N = 5)
 - ~55 hours for 5 deg2 (deep field)
 - x a few epochs
 - hard for LSST?
- Y band is too shallow

z>10: towards the first explosions

WFIRST

- Depth
 - 26.5 mag
- Area
 - 5 deg2
- Duration
 - 2 years
 - 50 days at $z \sim 6 = 1$ year
- Time
 - 2024 or later
 - JWST is from 2018
 - for ~5+ years
 - TMT from 2028

Summary

- supernovae with WFIRST
 - main goal is SN la cosmology
 - low-z SNe Ia from ground-based optical survey
 - photo-z
 - SLSNe at the reionization era will be discovered with Subaru
 - coordinated deep observations in z band
 - look for "z-drop" SNe
 - ~ 100 200 hours/epoch in z band for several epochs
 - deep z band images will be obtained as well
 - difficult with LSST?
 - long survey period of WFIRST is good for high-z SNe
 - can be coordinated with TMT (2028 -) and JWST (2018 ?)
 - optical observations coordinated with space are interesting!