

次世代観測装置用の新しい回折格子 III 海老塚 昇1, 岡本 隆之1, 竹田 真宏1, 細畠 拓也1, 山形 豊1, 佐々木 実2, 魚本 幸3,

島津 武仁³,佐藤 慎也⁴,橋本 信幸⁴,田中 壱⁵,服部 暁⁵,尾崎 忍夫⁵,青木 和光⁵ ¹ 理研,² 豊田工大・工,³ 東北大・工,⁴ シチズン時計・開発部,⁵ 国立天文台

Limitation of surface relief (SR) grating Birefringence volume phase holographic (B-VPH) grating **Transmission gratings for WFOS** $\sin\theta_0 = n \sin\theta_1$ $\eta_{\rm S} = \sin^2 \left\{ \frac{\pi (n_{S\max} - n_{S\min})t}{\Lambda (n_{S\max} + n_{S\min})\sin 2\theta_{S}} \right\}$ Vertex angle: $\theta_0 = 36 \sim 53^\circ$ $\Lambda (n_{P\max} + n_{P\min}) \sin 2\theta_P$ $n \sin(\alpha - \theta_1) = \sin \theta_2$ Period $: \Lambda = 2 \sim 5 \mu m$ $\theta_2 = \alpha + \theta_0$: 400 x 550~750 [mm] Size $\frac{(n_{S\max} - n_{S\min})}{(n_{P\max} - n_{P\min})} \cos 2\theta_{P}$ $n \sin(\alpha - \theta_1) = \sin(\alpha + \theta_0)$ $(n_{S\max} + n_{S\min})\sin 2\theta_S \quad (n_{P\max} + n_{P\min})\sin 2\theta_P$ $n = 1.5, \theta_0 \le 30^\circ (\theta_2 < 90^\circ)$ n $(\sin\alpha\cos\theta_1 - \sin\theta_1\cos\alpha) = \sin\alpha\cos\theta_0 + \sin\theta_0\cos\alpha$ $n = 1.8, \theta_0 \le 36^{\circ}$ $(n_{P\max} - n_{P\min})\cos 2\theta_P$ $(n_{S \max} - n_{S \min})$ $(n \cos\theta_1 - \cos\theta_0) \sin\alpha = (\sin\theta_0 + n \sin\theta_1) \cos\alpha$ 10 Thickness [µm] Thickness [µm] $n = 2.3, \theta_0 \le 45^\circ$ $(n_{S\max} + n_{S\min}) * 2\sin\theta_S \cos\theta_S \quad (\pi_{P\max} + n_{P\min}) * 2\sin\theta_P \cos\theta_P$ **Polarized diffraction** $= 2\sin\theta_0 \cos\alpha$ \mathbf{n}_1 $n = 3.0, \theta_0 \le 54^\circ$ efficiencies of Dicson's $\tan \alpha = 2\sin \theta_0 / (n \cos \theta_1 - \cos \theta_0)$ $(n_{S\max} - n_{S\min}) (n_{P\max} - n_{P\min}) \cos 2\theta_P$ **VPH grating (Polarizer)** Diamond: n = 2.46@400nmcalculated by Kogelnik SR grating with saw tooth grooves is not feasible for the high-dispersion transmission grating $\cos\theta_{P}$ $\cos\theta_{s}$ method. $\Lambda = 0.646$, $n_L =$

Birefringence VPH grating and calculated polarized diffraction efficiencies versus grating thick-ness *t*. Λ = 0.646 μ m, n_L=1.46, n_s= 1.544, n_p = 1.60, $\theta_{\rm B}$ =45°.

1.46, $n_{\rm H}$ =1.54, $\theta_{\rm B}$ =48.5°.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Wavelength [μm] **Diffraction efficiency of volume binary grating calculated by RCWA.** $\Lambda = 5\mu m$, L&S=4.75:0.25 [μm], $\theta_0 = 45^{\circ}$, $n_1 = 1.0$, $n_2 = 1.54$, $n_3 = 1.5$, t=9 μm .

Reflector facet transmission (RFT) grating

Hybrid grism for MOIRCS (as a prototype of RFT grating)

PUX

Pri

m material	: ZnSe	$(n_1 = 2.452)$	9@1.65 µm	1)
e	: S-FPM3	$n_2 = 1.524$	0@1.65 μn	n)
m vertex angle	$: \alpha = 23.8$	0		
ting period	: Λ= 10.7	9µm (92.68	grooves/m	n
dent angle	: $\theta_0 = 5^\circ$			
ove blaze angle	$:\beta = 64.8$	0		
ove vertex angle	$: \gamma = 61.8$	3°		

Slit width: 0.3" 7th, R= 2,900@0.88 μm 6th, R= 2,790@1.02 μm 5th, R= 2,750@1.25 μm 4th, R= 2,800@1.65 μm 3rd, R= 2,770@2.20 μm

UV curable LC (no=1.55, ne=1.72) + normal LC $(n_0=1.50, n_0=1.65), t=10 \ \mu m, 2,235 \ grooves/mm$ (**Λ~ 0.45 μm**), UV (315nm) : 1.3mW/cm2, 1sec.

Vis curable resin (nd=1.51) + UV curable LC (no=1.55, ne=1.72), t=20 μm, 616 grooves/mm $(\Lambda = 1.62 \ \mu m)$, Vis (532nm) : 2.0mW, 100sec.

Mirror surface

Quasi-Bragg immersion grating

Schematic representation of quasi-Bragg immersion (QBI) grating. (Ebizuka, SPIE 6273, 2006)

QB grating with tilted mirror lattice.

Surface reflection

of prism

K band 2.00-2.40

Echelle grism (Volume binary grating) for MOIRCS

Schematic representation of echelle grism for MOIRCS

Fabrication process of the volume binary grating

transmission grating		(0.32~2.4)	numerical calculations of RCWA.
Hybrid grism	2 rd ~	~ 70 (0.32~2.4)	Performing diamond cutting of a master grating of Ni-P alloy for MOIRCS. Replication method is under developing.
Volume binary grating	1 st ~	~ 80 (0.2~1000)	Performing test fabrications by using MEMS technique.
VPH grating →B-VPH grating	1 st	$\sim 90 \rightarrow \sim 100$ (0.32~2.4)	Installed in FOCAS, MOIRCS, Kools and WSGS2. (photopolymer) Developing new recording materials for volume hologram with liquid crystal.
Quasi-Bragg immersion grating	5 th ~	~ 80 (0.2~1000)	Performed test fabrications of lamination by atoms fusion bonding and lamination of embossed substrates.

Current and future works

- Trial fabrication of a mold for the RFT grating is on going.
- •SOQ (silicon on quartz) wafer will use for a substrate of the VB grating.
- •Performance of a 3D holographic printer (colinear two beam exposure system) for the VPH grating with a large size ($\sim 1 \times 1 \text{ [m]}$) will be evaluated.
- The mold for the hybrid grism of the MOICS will fabricate in this business year.