

次世代観測装置用の新しい回折格子V 海老塚 昇¹, 岡本 隆之¹,竹田 真宏¹,細畠 拓也¹, 山形 豊¹, 佐々木 実², 上塚 貴史³, 小西 真広³, 本原 顕太郎³, 児玉 忠恭⁴, 田中 壱⁵, 服部 暁⁵, 尾崎 忍夫⁵, 青木 和光⁵ ¹理研,²豊田工大・工,³東大・天文センター,⁴東北大・理,⁵国立天文台

Reflection and transmission grating

- Diameter of a camera lens exceeds maximum size (φ 440) of calcium fluoride if a reflection grating is used as the disperser.
- \rightarrow Transmission grating can reduce size of the camera lens (\rightarrow total optical system).
- \rightarrow Transmission grating is able to realize perfect Littrow mounting.

Limitation of surface relief (SR) transmission grating

SR transmission grating with saw tooth grooves is not feasible for the highdispersion grating.

1302 -

1301

1303

AR

VPH grating

- VPH (Volume Phase Holographic) grating, in which refractive index is modulated sinusoidally achieves diffraction efficiency up to 100% for S or P polarization.
- VPH grating can not achieves high diffraction efficiency for natural and circular polarizations at high dispersion because characteristics of diffraction efficiencies are different between
- S and P polarizations. \rightarrow Birefringence VPH grating.
- Diffraction efficiencies of VPH grating decrease in higher orders.
- \rightarrow VPH grating is not feasible for an echelle grating.

LightSmyth Transmission Grating for MOIRCS J and H band grisms instead of VPH grisms

1300

Schematic representation Schematic representation of volume binary grating. of echelle grism

Before (left) and after (right) Si oxidization of VB grating fabricated in SOQ substrate.

H band grism, 677 g/mm (Test peace)

Normalized specifications and performance of VB, SR and RFT gratings

AoI [°]	Order*	n ₁ / n ₀	L:S	Duty	t [Λ]**	Aspect (S:t)	Peak eff. [%]	Bandwidth [λ]***	Remarks
27.8	1	1.54	1:01	0.5	2	1:4	~90%	0.68	MOIRCS, K band
27.8	1	1.54	2:01	0.67	2.5	1:7.5	~93%	0.77	MOIRCS, K band
45	1	1.55	4:01	0.8	4	1:14	~95%	0.33	WFOS, etc.
28.4	3+	1.6/1.33	9:01	0.9	3	1:30	~75%	_	MOIRCS, echelle
45	7+	1.54	19:01	0.95	1.8	1:36	~75%	_	WFOS, VB grating
45	7+	_	-	-	-	-	~80% [†]	-	WFOS, SR reflection grating
45	7+	1.54	-	-	1.8	_	~83%	_	WFOS, RFT grating

Normalized by grating period: Λ. *Where + indicates additional orders. *Normalized by peak [†]Efficiency of *p* polarization is significantly shifted toward longer wavelength. wavelength: λ_0

VB, SR and RFT gratings for WFOS

VB grating

Schematic representation of VB grating (left), diffraction efficiencies of s (TE, middle) and p (TM, right) polarizations VB grating of $\theta_0 = 45^{\circ}$ without anti-reflection coating, $n_1 = 1.0$, $n_2 = 1.54$, $\Lambda = 5\mu m$, L&S = 4.75:0.25 $[\mu m], t = 9\mu m.$

Surface relief (SR) reflection grating

Schematic representation of SR grating with Littrow configuration. (left), diffraction efficiencies of s (TE, middle) and p (TM, right) polarizations* for SR grating of $\theta_0=45^{\circ}$ with Al mirror (thickness: 100 nm). **Reflector facet transmission (RFT) grating**

Beam propagation in RFT grating for $\theta_0=45^{\circ}$ (left), diffraction efficiencies of s (TE, middle) and p (TM, right) polarizations of the RFT grating without anti-reflection coating. Λ =5µm, θ_0 =45°, n=1.54, γ =38.3°.

Acknowledgements

(1.2~14) | fabrication of a Si and Ge grisms.

~ 80

1 st

Si or Ge grism

Performed direct diamond cutting of Si grisms. Planning

We appreciate Mr. Kajiura of the Toyota Institute of Technology for their assistance on the trial fabrications of the VB gratings. We utilize facility of the Advanced Technology Center of the National Astronomical Observatory of Japan (NAOJ) for grating measurements, Nanotechnology Platform Japan of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and RIKEN Center for Emergent Matter Science, for grating fabrications and performance evaluations. This work is supported by the grant-in-aid of NAOJ for TMT strategic basic R & D.