Roman

(Nancy Grace Roman Space Telescope) 米国Decadal survey2010大型衛星1位 SPACE TELESCOPE HST.JWSTにつづくNASA最優先の次期旗艦大型衛星 近赤外広視野サーベイ衛星(2026年打上) •宇宙の加速膨張の起源を解明 暗黒エネルギー/修正重力 •系外惑星の形成過程の解明 系外惑星(マイクロレンズ) 宇宙生命探査への技術実証 系外惑星(コロナグラフ) •幅広い科学研究 公募観測(25%.1.5年)

住(阪大) Romanプリプロジェクト

ROMAN

Roman

- 口径: 2.4m (HSTと同じ)、NRO(国家偵察局)から譲渡
- 軌道:L2
- 広視野分光撮像カメラ(0.28deg²)
 可視光・近赤外(0.6-2.3 μ m)270K
- コロナグラフ装置
- 寿命:5.3年(目標10年:サービス可能)

Outer Barrel Assembly (OBA)

Solar Array Sunshade Spacecraft Bus WFI CG

視野: 0.28deg²
 可視光•近赤外(0.6-2.3 µm)
 288 Mpixels, 0.11arcsec/pix

Moon (average size seen from Earth) ハッブル望遠鏡の視野の

- 90倍(可視光)
- 200倍(近赤外)

Shuess specification when gristin in meet wheel

最遠方銀河等をハッブルの200倍発見可能

Roman Survey volume and Sensitivity

Multiple surveys:

- High Latitude Survey
 - Imaging, spectroscopy, supernova monitoring
- Repeated Observations of Bulge Fields for microlensing
- 25% Guest Observer Program
- Coronagraph
 Observations
- Flexibility to choose optimal approach

12/17/18

• 8 imaging filters

• Spectroscopy via prism(0.6–1.8 μ m, $R \sim 100$, $\sim 24AB$) grism (1.0–1.9 μ m, $R \sim 600$, $\sim 22AB$)

F213 filter (1.95-2.3 micron) が追加

Sensitivities of LSST, WFIRST, and Euclid

Hubble x 200 Discovery of High-z Galaxies

z = 10.8 Galaxy

Precise measurements of Galaxy clustering Structure evolution up to high z

弱重カレンズによる暗黒物質分布

Figure 2-12: Mass density contours around the cluster MACS J1206.2-0848 derived from a ground-based weak lensing survey with Subaru (red) vs. a weak lensing study with HST/ACS+WFC3 (white). The 10x higher surface density of lensed galaxies achieved from space yields ~3x higher spatial resolution maps. The HST data

宇宙の加速膨張の起源を解明 (~2.5年観測)

◆これまでにない深く、広い、銀河分布サーベイ 2000平方度、撮像(YJH, H<26.7)+分光(R[~]600)

- 数十億個の銀河を発見
- 遠方銀河の密集度を測定
- 5億個の銀河の形を測定
 →
 - 弱い重カレンズ現象(WL)
 - Red shift space distortion (RSD)
 - Baryon Acoustic Oscillation (BAO)

◆これまでになく深いIa型超新星探査
 ・遠方のIa型超新星を~1500個検出

加速膨張の起源が暗黒エネルギーなのか? アインシュタイン重力理論に修正が必要なのか?を解明

Figure 3-28: The footprint of the WFIRST-2.4 observations. The red region shows the HLS, the blue shows the su-

pernova survey, and the magenta spot shows the microlensing survey. The HLS footprint area is 2054 deg². Roman Observational fields

期待される成果の例 暗黒エネルギー/修正重力

Roman(やよる暗黒亜ネルギ^{deb}の状⁴⁷ 態方程式パラッm & best determined by WHRST-態方程式パラッm & best determined by WHRST-態方程式パラッm & best determined by WHRST-態方程式パラッm & best determined by WHRST-動限の予想llipse, centered here on the cosmological constant mode^(w = -1, dw/da = 0), represents cur-(w =ate-bf-dw/dan=r0nの場合combination of が宇宙定数に対応) For this figure, we have が雪音定数に対応) ogy is w(z=0.47) = -1.022 and dw/da = -0.18, well within current observational constraints. The black ellipse shows the error forecast for

Romanによる修正重力理論パラメータの制限予測。 μ は非相対論的物質(バリオン、ダークマターなど) が感じる重力の変更、 Σ は相対論的物質(光子)が 感じる重力の変更を記述するパラメータ。上図は、 一般相対論が真の重力理論である場合($\mu = \Sigma = 0$)

Microlensing planet search by Roman

- 300M stars in 2 deg.²in the GB
- 15min cadence in 24hrs, 72 days
- 6 seasons(1.2yr total)
- 27,000 microlensing events

4–5hrs signal by Earth mass planet

Expect 1400 exoplantes(Penny+2019) (~200 less than 3Earth mass) ~250 free-floating planet (Johnson+2020)

重力マイクロレンズよる惑星分布解明 (~1年観測)

コロナグラフ装置による惑星直接観測

- 可視光
- コントラスト: 5x10⁻⁸
- 観測可能最小半径:
 100ミリ秒角@400nm
- 分光:R=50
- 偏光観測機能あり
- 技術実証観測~0.3年

- 近傍巨大ガス惑星、氷惑星の 撮像、分光
- 残骸円盤•原始惑星系円盤
- スペースで初の波面補償
 を用いた本格コロナグラフ
- LUVOIR, HabExによる地球 外生命探査への技術実証

WFIRST Brings Humanity Closer to

Characterizing exo-Earths

If present performance predictions are realized, there is potential for:

IELD INFRARED SURVEY

- 1000-fold improvement over present capabilities.
- Dozens of planets within reach of characterization
- Detection limit can reach super-Earths

WEIRST

GO & Archive sciences

- 1. Open Cluster and Star Forming Region IMFs to Planetary Mass
- 2. Exoplanet via transit and Astrometry
- 3. High-precision IR CMDs of stellar populations.
- 4. Quasars as a Reference Frame for Proper Motion Studies (LMC,GB)
- Proper Motions and Parallaxes of Disk and Bulge Stars (~10µas/yr)
- 6. White dwarfs.
- 7. Nearby Galaxies
- 8. Galaxy Structure and Morphology
- 9. Evolution of Massive Galaxies
- 10.Distant, High Mass Clusters of Galaxies
- 11.Obscured Quasars
- 12.Strongly Lensed Quasars
- 13.Strong Lensing
- 14. High-Redshift Quasars and Reionization
- 15. Faint End of the Quasar Luminosity Function
- 16. Probing the Epoch of Reionization with Lyman- α Emitters

Sample GO Program Assembly of Galaxies

Andromeda - PHAT Survey

WFIRST will survey nearby galaxies 100x faster than Hubble

12/17/18

Unique Probe of Stellar Populations and Nearby Galaxies

Resolve and characterize stellar pops out to large distances (47 Tuc and SMC - Kalirai et al. 2012)

Ultra-deep imaging of galaxy halos (M63 - Martinez-Delgado et al. 2010)

Roman status

2020/2 NASA予定通り進行中(phase C)
 2020/5 Nancy Grace Roman Space
 Telescopeに改名

- 3. 主鏡副鏡、研磨、コーティング完成。
- 4. 広視野装置WFI CDR(Critical Design Review) をパス。
- 5. Ksバンドフィルター追加決定

6. 2021/4 CGI CDRをパス
 7. 2021/7 地上系 CDR
 8. 検出器20枚選定

9. 2021/9 NASA Mission CDR

日本のRoman参加への活動

- 2010/12、初期WFIRST Science Definition Team(SDT)に住が参加
- 2013/7、WFIRST-AFTA SDTにJAXA代表として山田亨(ISAS)が参加。
- 2013/8、「WFIRST 連絡会」立ち上げ。山田亨(代表)、住(幹事)、約30人
- 2014/2、コロナグラフ開発 WACO WG設立
 田村(PI,東大,NAOJ) 早期の具体的検討が必至なコロナグラフ装置検討を先行
- 2015/3、SDT final report(日本の潜在的興味の表明を記載、他欧州、カナダ、韓国)
- 2016/1、WFIRST WGが承認(PI:住)(WACOからの発展的改組)
 - 2016/2、NASA started phase A. FSWG 開始
- 2016/6、山田(亨)がJAXA repとして、NASA FSWGにオブザーバ参加
- 2016/9-10、Subaru SACの承認。天文台、阪大からISASへLoI
- 2017/3、ISAS戦略的基礎開発予算(コロナグラフ)採択
- 2017/3、ISAS国際調整旅費採択
- 2018/3、ISAS戦略的基礎開発予算(コロナグラフ)採択
- 2017/9、日本の参加計画提案書(海外戦略的協力ミッション)を JAXA首脳部へ提出
- 2020/3 JAXA-NASA LOA にサイン(MOU準備中)
- Roman Science Integration Team (SIT)に日本から24人参加。
- 2021年2月、JAXAミッション定義審査を通過し、Phase Aに進み、 プリプロジェクトチーム(7名、サイエンスチーム64名)で推進中。
- コロナグラフ装置、光学系の試作・実機の一部をNASAに納入済

JAXA Roman team members joined to SIT

24 SIT member, 10 Domestic member

- 1. "COSMOLOGY WITH THE WFIRST HIGH LATITUDE SURVEY" (Chair: Olivier Dore) Masahiro Takada (U.tokyo, IPMU), Hironao Miyatake (Nagoya U.), Tomomi Sunayama(Nagoya U.)
- 2. "OPTIMIZING THE WFIRST TYPE IA SUPERNOVA SURVEY" (Ryan Foley) Naoki Yasuda (U.tokyo, IPMU) Takashi Moriya (NAOJ) Yuji Urata (National Central University, Taipei)
- 3. "INVESTIGATING THE NATURE OF DARK ENERGY USING TYPE IA SUPERNOVAE WITH WFIRST-AFTA SPACE MISSION" (Saul Perlmutter)

Nao Suzuki (U.tokyo, IPMU), Tomoki Morokuma (U.Tokyo, IoA)

Exoplanet Microlensing

Roman

4. "PREPARING FOR THE WFIRST MICROLENSING SURVEY: SIMULATIONS, REQUIREMENTS, SURVEY STRATEGIES, AND PRECURSOR OBSERVATIONS" (Scott Gaudi)

Takahiro Sumi (Osaka U.), Daisuke Suzuki (Osaka U.), Naoki Koshimoto (U.Tokyo), Kento Masuda (Osaka U.)

Exoplanet Coronagraphs

 OPTIMIZING WFIRST CORONAGRAPH SCIENCE" (Bruce Macintosh) Motohide Tamura (U. Tokyo/ABC), Taichi Uyama(Caltech/IPAC), Naoshi Murakami (Hokkaido U.)
 "HARNESSING THE POWER OF THE WFIRST-CORONAGRAPH: A COORDINATED PLAN FOR EXOPLANET AND DISK SCIENCE" (Margaret Turnbull)

Taro Matsuo (Nagoya U.), Satoshi Ito(ISAS/JAXA)

Guest Investigator (GI)/Guest Observer (GO) science

7. "WFIRST EXTRAGALACTIC POTENTIAL ÓBSERVATIONS (EXPO) SCIENCE INVESTIGATION TEAM" (Brant Robertson)

Tadayuki Kodama (Tohoku U.), Takashi Moriya (NAOJ) Kimihiko Nakajima (NAOJ), Rhythm Shimakawa (NAOJ)

- 8. "WINGS: WFIRST INFRARED NEARBY GALAXY SURVEY" (Benjamin Williams) Masayuki Tanaka (NAOJ), Sakurako Okamoto (NAOJ)
- 9. "ARCHIVAL RESEARCH CAPABILITIES OF THE WFIRST DATA SET "(Alexander Szalay) Yusei Koyama (NAOJ), Hisanori Furusawa(NAOJ),Masao Hayashi (NAOJ/Subaru), Tsuyoshi Terai (NAOJ/Subaru)
- 10. "COSMIC DAWN WITH WFIRST" (James Rhoads) Masami Ouchi (U. Tokyo, ICRR/NAOJ) Yuichi Harikane (NAOJ/UCL), Daisuke Yonetoku (Kanazawa U.) Masafusa Onoue (MPIA)
- 11. "RESOLVING THE MILKY WAY WITH WFIRST" (Jason Kalirai→Jason Tumlison) Noriyuki Matsunaga (U.Tokyo IoA) Shogo Nishiyama (Miyagi Kyoiu U) Riku Urago (Kagoshima U.)

The activities continue with New science teams

日本の貢献案および検討状況 宇宙研Romanプリプロジェクトで以下をひとつのパッケージとして推進 1. すばる望遠鏡によるRoman Synergy Survey (2026年ごろ~100晩) 1. photo-zのキャリブレーション 2. 狭帯域フィルター etc... コミュニティ、ハワイ観測所長、国立天文台長及び、 すばる委員会よりコミットメントの合意を得た。 2. Roman コロナグラフ装置における機能強化 ● 偏光撮像機能の付加 EM制作済、実機制作中 コロナグラフマスク基板製作 製作済 3. 地上局による貢献(Ka-band downlink) • 日本のタイムゾーンでの基地局運用は大きなメリット 4. 地上マイクロレンズデータ提供(MOA)合意 地上赤外マイクロレンズ同時観測(阪大)合意

■ Romanへの日本の貢献案の柱である。

●2020年代、存在意義を問われるすばるの能力を最大限活用。

- 巨大プロジェクトRomanに比較的小さな持ち出しで参加できる、 非常に大きなレバレッジ効果がある。(Roman側にとっても同 じ)
- ●観測提案を公募し、Roman-Jチーム、NASA Roman FSWGで つくるステアリングコミッティーを中心に、コミュニティで検討。
 - ・メインサーベイを補完・強化する。
 ・GOで新たな観測を提案する。

White paper Subaru-WFIRST synergistic observation

2016/5/15: call for white paper

30 proposals by82 people

http://iral2.ess.sci.osakau.ac.jp/~sumi/Subaru-WFIRST-Synergy.pdf

Science Program	Authors	HSC	PFS	IRD	SCE	ULT
Cosmology/Extragalactic Astrophysics						
Cosmology with large-scale structure probes	Takada+	0	0	_	_	_
Quasars in the Reionization Era	Matsuoka+	0	_	_	_	_
Finding and Characterizing high-z Clusters	Oguri	0	_	_	_	_
Searching for Bright Lensed high-z Galaxies	Oguri	0	_	_	_	_
Protoclusters across Cosmic Time	Toshikawa+	0	_	_	_	_
Protoclusters in the Reionization Epoch	Toshikawa+	0	—	_	—	_
Precise photo-z for Weak Lensing	Tanaka+	_	0	_	_	_
Low-Mass Galaxies at up to $z \sim 1.5$	Yabe+	0	0	_	_	_
Galaxy and IGM Co-Evolution	Ouchi+	0	0	_	—	_
Superluminous SNe at Reionization Epoch	Moriya+	0	—	_	—	_
Mass Assembly History of Galaxies since $z=4$	Kodama+	0	_	_	_	-
Galactic Astrophysics / Local Volume						
Milky Way Disk Flare behind the Bulge	Matsunaga+	_	_	_	_	0
Deep NIR Imaging of the Galactic Bulge	Nakada +	0	0	_	_	-
Hypervelocity Stars in the Galactic Bulge	Nishiyama	_	0	_	_	0
Dark Matter on Dwarf Spheroidal Galaxies	Hayashi+	_	0	_	_	-
Structure of the Galactic Outer Stellar Disk	Toyouchi+	_	0	_	_	-
Stellar Astrophysics						
Low-Mass End of the Initial Mass Function	Tomida	0	0	0	_	-
Bulge Stellar IMF & Low Mass Close Binary	Ita	_	0	_	_	-
Dust Condensation Region around AGB Stars	Ueta+	_	_	_	0	-
Properties of the Bulge Dwarfs by IR Spectra	Fukui+	_	_	0	_	0
Solar System						
Surface Characterization of TNOs	Terai	0	_	_	_	-
Water Ices in the Inner Solar System	Yoshida	0	_	_	_	-
Exoplanets						
Probing Dust Grains in Circumstellar Disks	Muto	_	_	_	0	-
Polarimetry of Planets/Protoplanetary Disks	Murakami+	_	_	_	0	-
Exoplanets Search by Astrometry	Yamaguchi+	_	_	_	0	-
Extinction in WFIRST Microlensing Fields	Suzuki+	0	_	_	_	-
Concurrent Microlensing Observations	Suzuki+	0	_	_	_	-
Imaging of Microlensing Planetary Hosts	Fukui+	_	_	_	0	0
Characterization of Transiting Exoplanets	Narita	_	—	0	—	-
Exoplanets around Late-M Dwarfs	Kuzuhara+	_	—	0	—	-

Note. — SCE and ULT indicate the SCExAO and the ULTIMATE-Subaru, respectively.

WFIRST-Subaru Synergistic Observation Workshop

December 18-20, 2017 NAOJ Mitaka Campus, Tokyo, Japan

Organized by JAXA WFIRST WG, Hawaii observatory, NASA WFIRST FSWG Participants:>90, including 16 from US, WFIRST FSWG, SIT

Expected timeline.

YEAR		
2017	1 st Workshop	Collecting ideas, broad interest
2018	2 nd Workshop	Possible programs → summarized in WP
2019	3 rd Workshop as a session in Subaru 20 th Meeting	Possible programs in various different science fields
2020	Preliminary proposal development	development of preliminary 'candidate programs'
2021	4th WorkshopNASARomanSolicitation	
2022 TBD	Consolidating the Program	Front-loading program?
2023 TBD	Proposal Planning, Teaming	
2024 TBD	Final Proposal Submission	The proposal of the consolidated program will be reviewed by Subaru Advisory Committee
2026 TBD	Scheduling	

シナジーWSの結果を白書にまとめた。

Enabling Breakthrough Science with the Subaru Telescope and the Wide Field Infrared Survey Telescope (WFIRST): A White paper for Subaru and WFIRST Communities

April 25, 2019

Editors: Jason Rhodes¹ (Jet Propulsion Laboratory, California Institute of Technology), Takahiro Sumi² (Osaka University)

Also submitted to: Subaru & Roman communities, US Decal survey Principal Editors: Jason Rhodes, T.Sumi Executive Summary: D. Spergel, T. Yamada

http://www.ir.isas.jaxa.jp/WFIRST_Subaru_II/TALKS/WFI RST_Subaru_April25.pdf User Name: wfirst Password: subaru

Required nights and conditions in WP2019.

Category/Topic	Instrumen t	N req.	condi tion
Microlensing parallax	HSC	13.5	Bright
Microlensing NIR spec. ToO	IRD	11.2-15	Bright
Microlensing NIR concurrent	ULTIMATE	3.4	Bright
CGI Support	SCExAO/ CHARIS	18	Bright
CGI Support /Doppler	IRD	7	Bright
SNe Follow-up	PFS	25	Dark
SNe Live Spectroscopy	PFS	20	Dark
Deep Field Ultra-Deep	HSC	33	Dark
Deep Field SNe Fields Imaging	HSC	8	Dark
Deep Field SNe Fields Spectra	PFS	8	Dark
Deep Field SNe Fields NB	HSC/PFS	6-10	Dark
Cosmology sp redshift calib.	PFS	25-50	Dark
Cosmology IB redshift calib.	HSC	60	Dark
Nearby Galaxies Pre-im. Halo	HSC	10	Dark
Milky Way Bulge HV	PFS/ULTI MATE	4.5	Dark
Milky Way Bulge stars	IRD	15	Bright
Solar System TNO	HSC	6	Dark
Solar System Minor Body/Irr	HSC	10	Dark
Irregular Satellites	HSC	6	Dark
total		321.4	

• Total required 312 nights is three times more than reserved 100 nights (100 nights are not enough!)

- 78% of required time is in Dark night with HSC/PFS.
- Several programs have overlapping.
 Should be Combined/shared.
- Completion of the PFS Subaru Strategic Program (SSP: a large program up to 360 night) is delayed to 2027. Most of Dark nights will be available after this.
- Due to the fact that PFS-SSP is expected to start in 2023A and last until 27B, Dark nights with HSC will be relatively more available in 2022 (A,B) before SSP starts.

 front-loading of a part of our Subaru-Roman Synergistic program in this time slot may be worth considering.

コロナグラフ装置の機能強化 偏光撮像機能(高精度偏光分離素子)提供 EM製作済、実機製作中 ・惑星反射光の偏光⇒実効コントラストを1-2桁向上 ・惑星系円盤の偏光⇒地球型惑星形成領域の円盤

コロナグラフマスク高面精度基板提供提供済
 *溶融石英基板: Hybrid-Lyot コロナグラフ用焦点面マスク
 →JPLで製作成功。試験中
 ・シリコン基板: Shaped Pupil コロナグラフ用瞳面マスク
 →JPLで制作中
 次世代スペース高コントラスト観測の基盤を作る

Dual Beam Polarimetry

- In dual-beam polarimetry, we can also use combination of half-wave plate and Wollaston prism.
- But to reduce the optical components, we do not employ a half-wave plate.
- Experience: Subaru/HiCIAO; PlanetPOL vs. CIAO; IRSF/SIRPOL

JAXA地上局によるデータ受信協力

● NASA White Sands局、ESA New Norcia局、JAXA 美笹局54mによる受信案
 ● Ka 26.5GHz帯で大容量受信 250Mbps, 4h/dayが要求

500Mbpsがゴール。

White Sands 10deg (In View Time) Madrid 10deg (In View Time) Minimum: 8.05 hours Minimum: 5.71 hours Maximum: 13.01 hours Maximum: 12.93 hours Average: 10.24 hours Average: 10.44 hours	JAXA 20deg (In View Time) Minimum: 5.32 hours Maximum: 11.49 hours Average: 8.34 hours				7	-	
			SE-L2など、近地球周回ではない 王文街星・計画におけるデータ生成率				
			ミッション	軌道	通信帯	データ通信率	
	10 million		WMAP	L2 リサージュ	S (2GHZ)	667kbps	
		Contraction of the local division of the loc	Planck	L2 リサージュ	X	1.5Mbps	
			Herschel	L2 リサージュ	X	1.5Mbps	
			GAIA	L2 リサージュ	X	8.7Mbps	
			JWST	L2 ハロー	Ka	16Mbps-	
ESA 10d Minin	eg (In View Time) DSN num: 7.21 hours M	10deg (In View Time) inimum: 8.21 hours	Euclid	L2	Ka	74Mbps, 850Gbpd	
Maxim	um: 12.18 hours Ma	aximum: 13.02 hours	LiteBIRD	L2 リサージュ	X	~10Mbps TBD	
Avera	ge: 10.39 nours	verage: 10.03 hours	SPICA	L2 ハロー	X	~10Mbps TBD	
			Kepler	Earth Trailing	Ka	4.5Mbps	
			TESS	Inclined Earth	Ka	100Mbps	

- 2020年7月NASA Roman Ground System PDRでJAXA案承認
- JAXA:フェーズA(概念検討+概念設計)
- 日本が欧米なみの受信能力を獲得する基盤整備でもある。

地上マイクロレンズ観測:PRIME (PRime-focus Infrared Mirolensing Experiment)

 $\frac{1.8m(f/2.29)}{2.29}$

満月の6倍、世界最大統

.45平方度

H28~特別推進研究(PI:住、阪大)

世界初の近赤外線による重力 マイクロレンズ系外惑星探査

Romanの 支援 観測 (事前観測及び同時観測) 2020年9月国内にて光学調整 2020年12月発送 2022年10月観測棟完成 2021年12月カメラ完成@GSFC 2021年12月望遠鏡インストール 2022年 1月カメラインストール フリカ共和国サザーランド観測所

The World Widest FOV in NIR with World Largest class NIR camera U. of Maryland manufacture the camera @GSFC by Loaning 4 Teledyne 4kx4k H4RG-10 from Roman team

予算不足も、ABC, SAAOの参加で解決

- FOV:1.45deg²(0.5"/pix)
- T~80K
- 2 filter wheels
- ACADIA electronics Alexander Kutyrev(NASA/GSFC,UMD) Yuki Hirao (Osaka U./GSFC)

Mass Measurements via Simultaneous Roman-Ground obs.

- ・ 地上マイクロレンズ望遠鏡: <u>5.5億円(建設5億円+運用0.5億円</u>)
 (大阪大学)
 (科研費他獲得済み)
- 地上局 Ka帯機能拡張: <u>18.4億円</u>(建設14.8億円+運用3.6億円)
 (JAXA)
- コロナグラフ制作費: <u>2.7億円(準備0.8億円+建設1.9億円)</u>
 (JAXA, ABC, 北海道大学など)
- ・ 計画管理・科学協力推進: 2.5億円
 ・ 総額: <u>39.1億円</u>
 ・ JAXA戦略的海外共同ミッションとして提案中
 JAXAミッション定義審査を通過し、Phase Aに
 ・ JAXA Romanプリプロジェクト(7名、サイエンスチーム64)

学術的価値

- 暗黒エネルギー/アインシュタイン重力の検証と系外惑星は、宇宙物理の最重要分野の一つで、国民の関心、知的価値は高い。
- 日本の光赤外線衛星は、欧米に比べて大きく遅れており、規模 も小さく機会も少ない。2030年代まで大型衛星はない。今回、初 めてNASAの旗艦ミッションであるRomanへ参加し、最先端の研 究、人材育成を継続的に推進するとともに、今後の日本主導の 衛星開発のための技術的ステップとする。
- コロナグラフ装置の開発は実機での実証が不可欠。2030年代以降に計画されている宇宙生命探査ミッション(LUVOIR・HabEx)に繋がる重要な技術で、発展性は非常に高い。
- 地上局整備は、国内では初めてKa-band (26GHz)での受信機能 を整備して、欧米並みのL2対応の広帯域通信能力を獲得する。

緊急性,各分野での連携,実現性

- 緊急性
 - Romanは2026年打ち上げを予定しており、2024年までに地上 局改修を完了する必要がある。
- 各分野での連携
- 宇宙論、銀河、突発天体、太陽系、系外惑星など様々な分野の理論、実験研究者64名がサイエンスチームに参加。
 実現性
 - NASA予定通り進行中(2020/2 phase C)
 - 2020/3 JAXA-NASA LOA にサイン(MOU準備中)
 - コロナグラフ装置開発、光学系の試作・実機の一部をNASAに 納入済
 - PRIME望遠鏡は順調に制作中(科研費特別推進研究等)。
 - Roman Science Integration Team (SIT)に日本から24人参加。
 - 2021年2月、JAXAミッション定義審査を通過し、Phase Aに進み、プリプロジェクトテームとして推進中。

- すばるは凄い(HSC, PFS etc)。てこにして大型計画に参加
- できるだけ早期からの参加表明が重要 特にハードウェアの場合は、概念検討段階から。 (PRIMEの例も)。サイエンス計画検討も。 NASA大型の場合は、Decadal検討段階から (RomanはDecal後から。コミュニティに広げるのに数年)
- 広い分野の方々のサポートが必要(特に若手)
 研究会、ミーティングで地道に意見交換
- 人が大事(宇宙研の体制、計画検討への参加、 データ解析<--->NASAオープンスカイポリシー)

Summary

Romanは、広視野を利用した大統計量でせまる宇宙論 /系外惑星の究極ミッション ●宇宙の加速膨張の起源(暗黒エネルギー/修正重力) ●系外惑星の形成過程を解明 ●幅広い宇宙科学(公募観測) ●系外生命探査のための技術実証

●日本の貢献パッケージ

- 1) すばるシナジー観測
- 2) 地上マイクロレンズデータ提供、観測
- 3) コロナグラフ偏光機能の提供
- 4)地上局

OK OK 製作中 概念検討中

• 地上局は、予算確保が必要