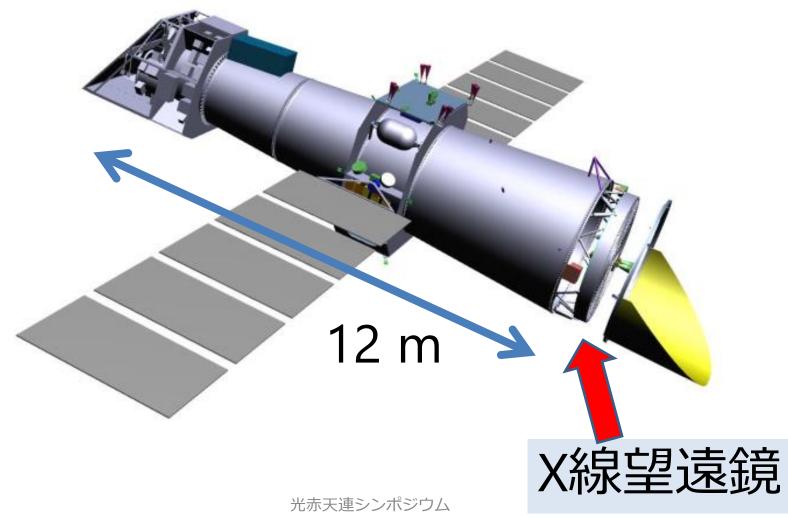

松本浩典 (大阪大)

山崎典子, 山口弘悦, 前田良知, 海老沢研(ISAS/JAXA), 満田和久(NAOJ), 篠崎慶亮(JAXA), 太田直美(奈良女子大), 馬場彩(東京大), 上田佳宏(京都大), 寺島雄一, 栗木久光(愛媛大), 坪井陽子 (中央大), 江副 祐一郎, 石川久美 (都立大), 三石郁之 (名古屋大), 深沢泰司(広島大), 鶴剛(京都大), 常深博(大阪大学), 佐藤浩介, 寺田幸功(埼玉大), 他 Athena 所內検討チーム


X線天文衛星: ESA 大型計画2号機に採択 (2014)

2030年代 初頭打上げ

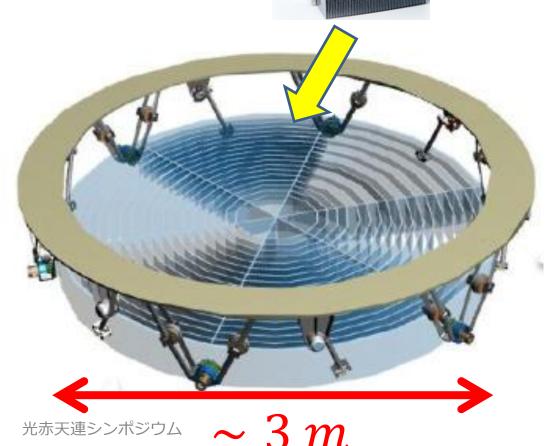
開発 欧州主導+日米

Athena

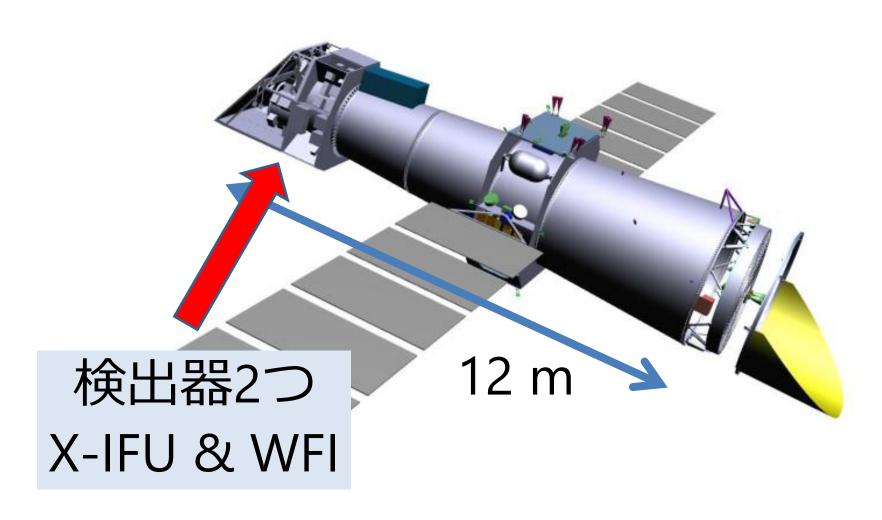
2021/9/7

X線望遠鏡

Silicon Pore Optics


×678

大有効面積 > 1.4 m²


高角度分解能 5秒角

2021/9/7

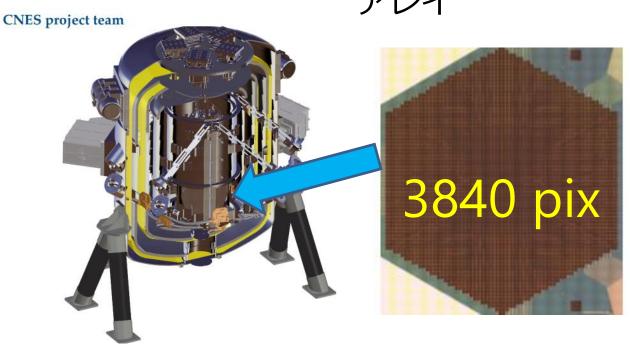
(ひとみ、XRISM ~1分角)

Athena

2021/9/7

X-IFU:X線TESマイクロカロリメーター

6

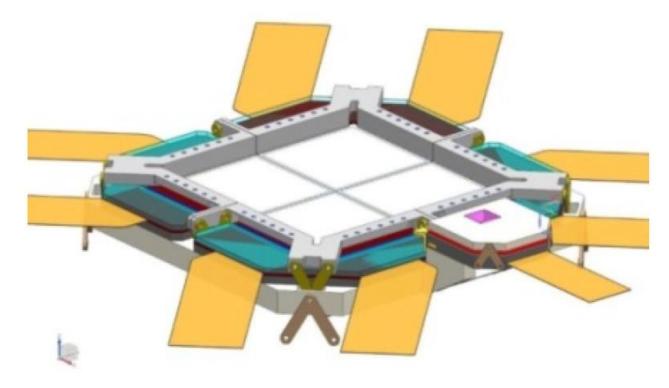

X-ray Integral Field Unit (X-IFU)

冷凍機+デュワー

TESカロリメーター アレイ

精密撮像分光 $\Delta E \sim 2.5 \, eV$

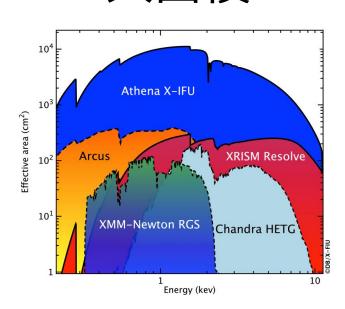
(ひとみ、XRISM 36 pix, 4 eV)



光赤天連シンポジウム

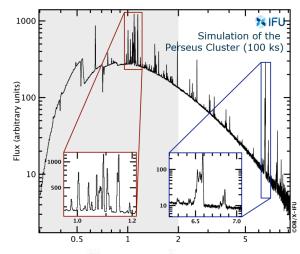
Wide Field Imager (WFI)

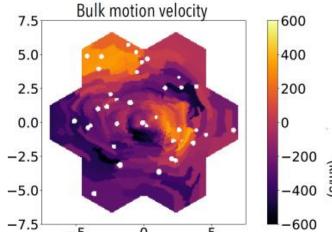
広視野 40'×40'


分光 ΔE~130 eV

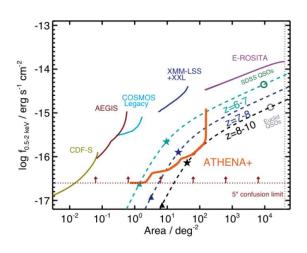
光赤天連シンポジウム

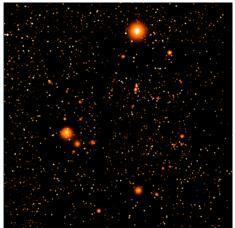
Athena's innovation


大面積

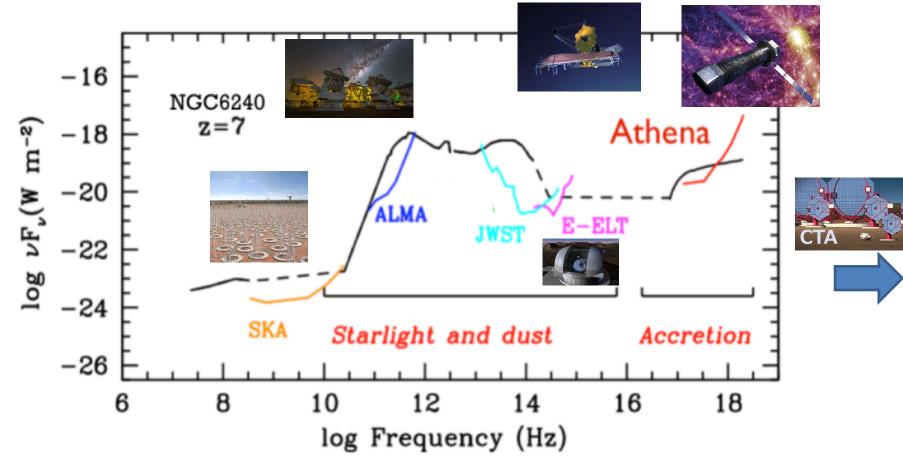


©D. Barret & M. Guainazzi


最も精密な


撮像分光観測

広く深い X線サーベイ



2021/9/7

学術的意義

THEATHENA
MISSION

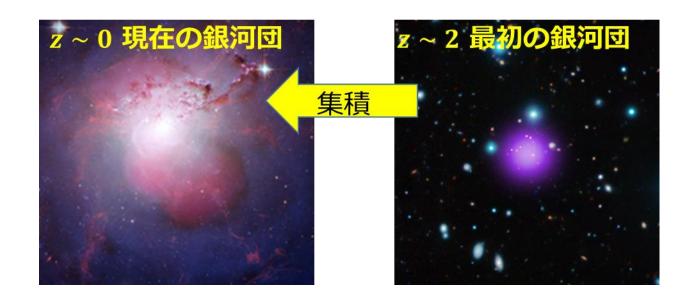
2030年代: 大型観測装置時代。

各波長の大型観測装置と比肩してX線観測を担当

世界で唯一の確定した大型X線天文台

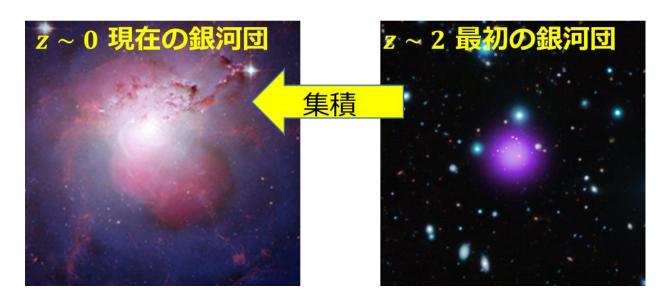
サイエンステーマ

- キーサイエンス
 - -"Hot Universe":銀河団成長
 - バリオンの大規模構造への集積
 - "Energetic Universe": 巨大BH成長
 - ・巨大ブラックホールの成長と周辺へのフィード バック
- 2030年代のX線 Observatory
 - その時代Chandra, XMM-Newtonはない

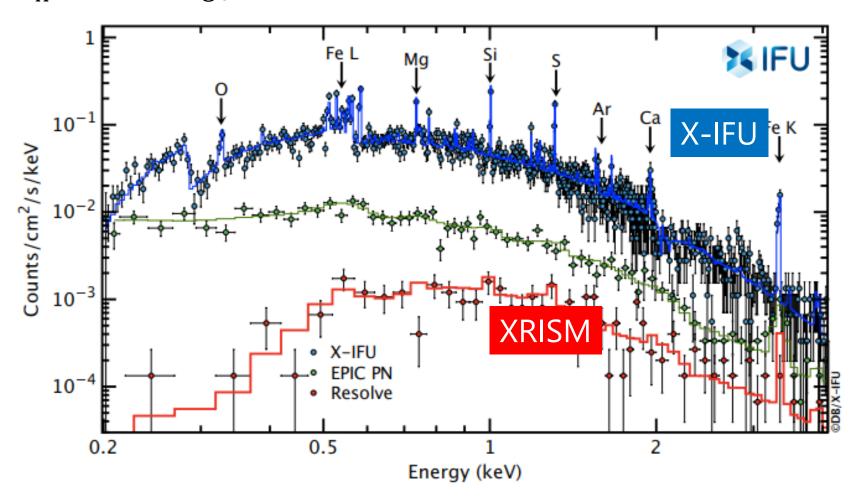

バリオンの進化を解明する。

銀河団

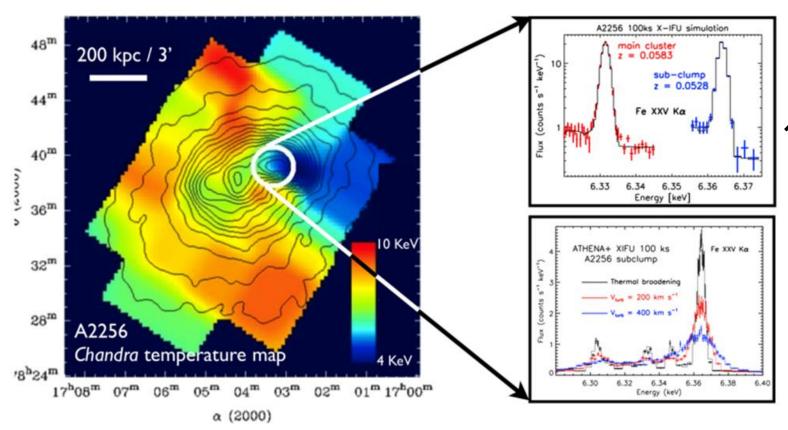
重力束縛された最大の構造


銀河団バリオンの主成分はX線ガス

どのように高温になった?


エネルギー生成史の解明

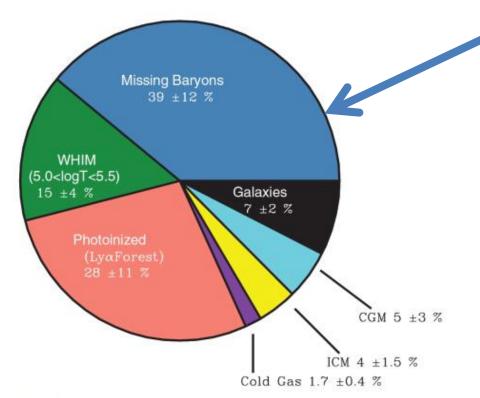
熱エネルギー (温度) 非熱的エネルギー (乱流、バルク運動) 超新星による注入 (重元素組成)



精密分光→ガスの温度、密度、重元素

 $L_X = 10^{44} \ erg/s$, kT = 3 keV, z = 1, 観測150 ks

精密分光一非熱的運動



バルク運動

乱流

ミッシングバリオン

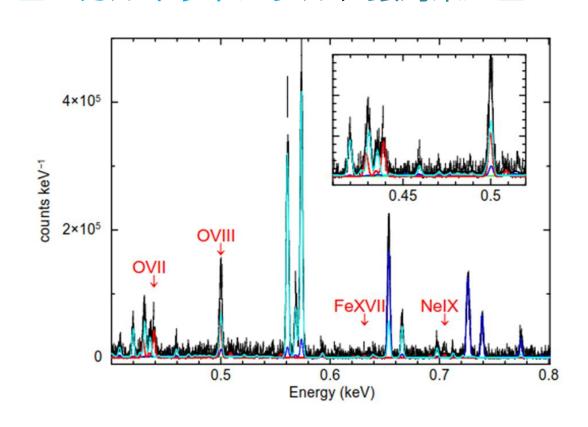
バリオン割合

FIGURE 1 Baryon budget in the Universe, at z = 0. The actual percentage of baryons still missing (blue slice) could be as high as $\approx 50\%$.

温かいガス? (WHIM)

Warm-Hot Intergalactic Medium

$$10^5 \sim 10^7 K$$
 $10^{-6} \sim 10^{-4} cm^{-3}$
銀河団周辺

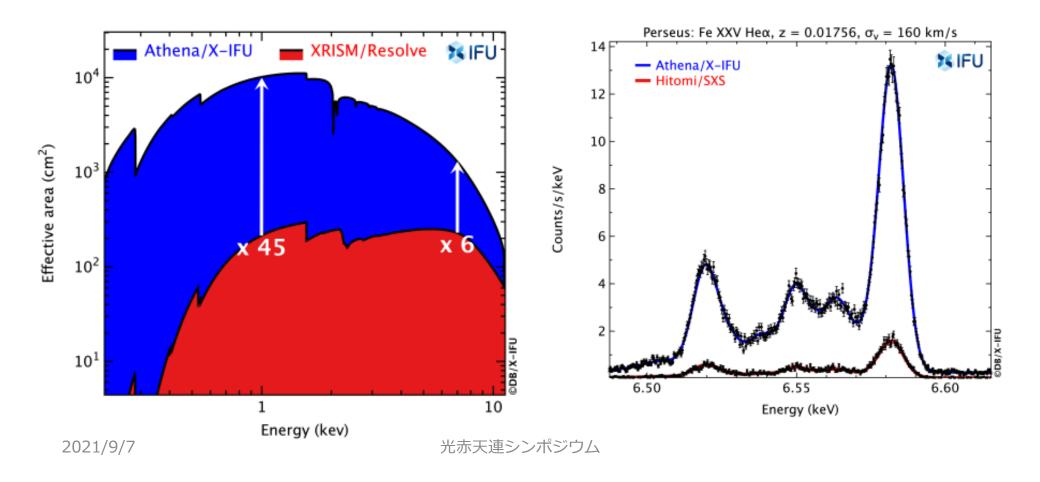

Nicastro et al 赤 201 オブウム

精密分光→低密度の極限へ

WHIM, ローカルホットバブル、銀河系ハロー

WHIMが存在 →酸素特性X線

物理状態を決定

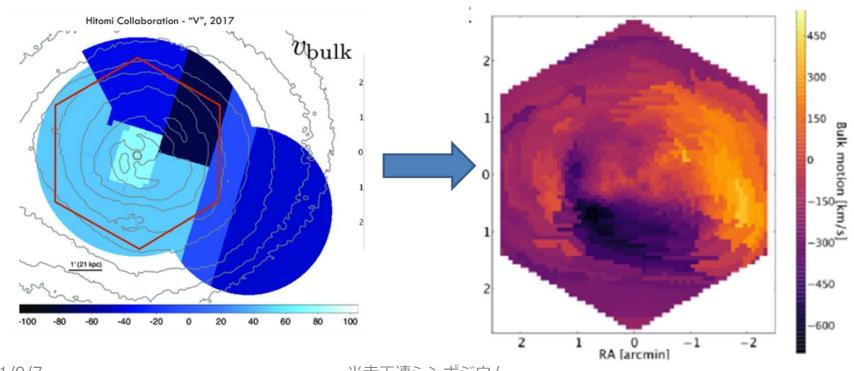


Hattori et al. 2017, PASJ, 69, 39

THE ATHERACHEMA MISSION

ひとみ、XRISM→Athena。

大有効面積化


ひとみ, XRISM→Athena₂₁

角度分解能 16 倍向上

ひとみ、XRISM


Athena X-IFU

Barret et al .2016

ひとみ、XRISM 近傍の明るい天体

Athena 遠方の暗い天体

Athena で"時間軸"を加える

E ATHENA MISSION

日本の参加の目的

- ひとみ、XRISMの成果に基づき、 Athenaの科学成果を最大化する
- ・ハードウェア開発に協力し、Athenaを 確実に実現する

XRISM で

X線精密分光学の基礎を築く

例: 解析手法の確立、原子過程計算精度向上など 例 Hitomi collaboration, 2018, PASJ, 70, 12

新しいサイエンスを創出する

そしてAthenaで発展させる

光赤天連シンポジウム

ESA Athena Science Study Team (ASST)

M. Guainazzi (Chair), D. Barret (X-IFU PI), K. Nandra (WFI PI), M. Cappi, E. Costantini, J. Croston, A. Decourchelle, J.W. den Herder, L. Piro, N. Rea, T. Reiprich, N. Werner, R. Smith (NASA), 松本 (JAXA).

SWG1

Hot Universe Fabian, Reiprich, 太田(奈良女)

SWG1.1

Evolution of galaxy group and clusters

Allen, 佐藤 (埼玉大),

Pointecouteau

SWG1.2

Astrophysics of galaxy group and clusters

Ettori, Pratt, Eckert

SWG1.3

AGN feedback in galaxy group and clusters

Croston, Sanders, McNamara

SWG1.4

Missing baryons and warm-hot intergalactic medium Kaastra, Finoguenov

SWG2

Energetic Universe Nandra, Cappi, Brenneman

SWG2.1

Formation and growth of earliest **SMBH**

Aird, Comastri

SWG2.2

Understanding the build-up of SMBH and galaxies

Georgakakis, Carrera, 上田 (京大)

SWG2.3

Feedback in local AGN and star forming galaxies

Ponti, Ptak, 寺島(愛媛大)

SWG2.4

Close environments of SMBH Dovciak, Matt, Miniutti

SWG2.5

Physics of accretion Done, Miller, Motch

SWG2.6

Luminous extragalactic transients Jonker, O´Brien

SWG3

Observatory Decourchelle, 松本, Smith

SWG3.1

Solar System & exoplanets Branduardi-Raymont, Güdel

SWG3.2

Star formation and evolution Rauw, Sciortino

SWG3.3

End points of stellar evolution Bozzo, Schwope

SWG3.4

Supernova remnants & Interstellar medium

馬場(東大), Sasaki

光赤天連シンポジウム

SWG3.5

Multiwavelength synergy Combes, Salvato

TWG4

Telescope Willingale, Pareschi

粟木(愛媛大)、前田 (ISAS)

MWG5

Mission Performance den Herder, Piro, Rau

MWG5.1

Science ground segment Watson, Webb

MWG5.2

Background

Laurent, Molendi

MWG5.3

Inter-calibration

Burwitz, Pajot, Sembay

MWG5.4

End-to-end simulations

Peille, Wilms

MWG5.5

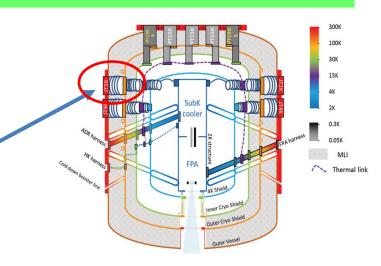
Advanced analysis tools Fiore, Haberi

MWG5.6

Targets of opportunity Basa, Troja

日本人チェア

SWG chair:6名


ASST: 1名 (米国とほぼ同数)

ハードウェア開発

メイン:

X-IFU冷却系

2K ジュールトムソン冷凍機 日本担当以外に 技術的成立解無し

Athena は日本の参加無くして実現しない

その他:

WFI エレキ 望遠鏡コーティング TES カロリメータ―読み出し など (科研費などで活動) _{光赤天連シンポジウム}

戦略性

• X線精密分光

- てんま、あすか、すざく、ひとみ、XRISMと日本が 発展させたX線分光の決定版
 - 2030年代の科学者がXRISMの成果をもとに世界に飛躍するチャンス
- 観測時間日本枠
 - 具体的交渉はこれから。特に Key Science への参加権利。XRISMの成果を生かせるように。
 - ・2K JTが重要コンポーネントであることをもとに、金額以 、上の枠をとるべく努力。。。。。

戦略性

• 冷凍機開発

- -衛星上で無冷媒極低温冷却系を使用した、高 感度低ノイズ観測
 - LiteBIRD, SPICAにも共通した日本の強み
- -2K JT冷凍機は、日本しかできない
 - 日本がやらなければ、2030年代のX線観測がなく なる。

コミュニティでの位置づけ (MP2023より前)

3U

高エネルギー宇宙物理連絡会

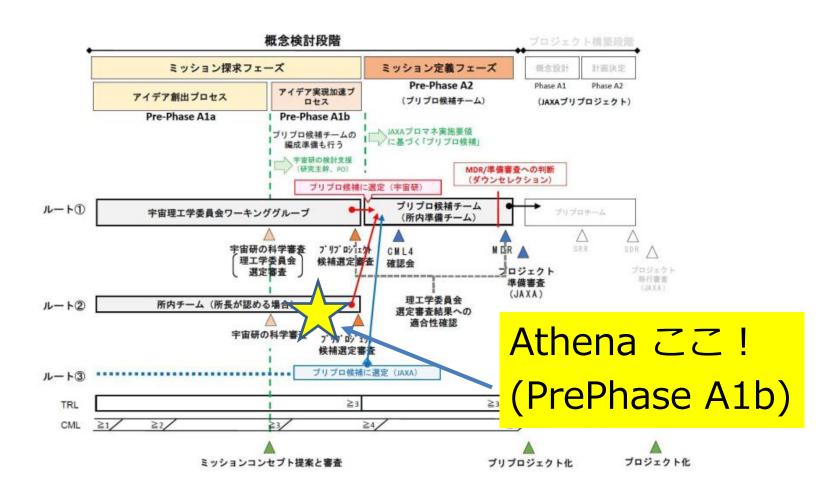
2014年3月高宇連討論会

「Athena と同じ規模のものを単独の国が立ち上げることは困難であり、自分たちが行うべきサイエンスのある部分はAthena で実現される。このことから、Athena がその成果を最大限にあげられるように、わが国としても貢献すべきである」

2018年6月高宇連将来計画検討(第二期答申)

「高宇連の旗艦ミッションであるXARMと、それに引き続く Athenaは、**高宇連の最優先課題**として開発・検討が進められている。」

MP2020: 重点大型計画ビアリング対象


ステータス

THE ATHENA MISSION

Athena statusと今後

Jan. 2021	Spacecraft Interim Review
2021 後半	Science Instrument Module (SIM) Review
2022 前半	Payload and SIM System Requirement Review (SRR)
2022 後半	Mission and Spacecraft SRR
2022 夏	Definition Study Report (aka Red book)
2022 終盤	Mission Adoption Review
2023以降	Implementation phase (約10年)
2030年代前半	Launch

日本側のstatus

Mission Adoption in 2022

2022年終盤 ここでAthenaの全容決定 日本のハードウェア貢献も決定 それ以降 implementation

これからが日本のフェーズアップ・予算 獲得に向けて最も大切な時期

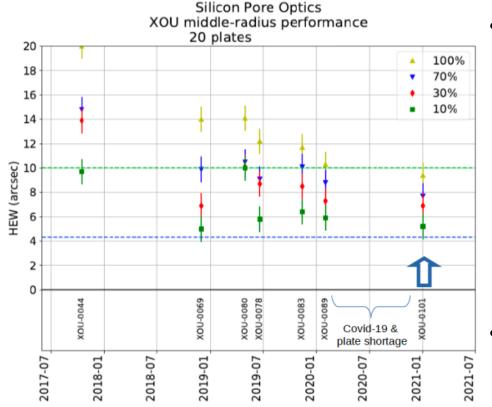
所要経費

Athena 全体 ESA 1B€、ESA加盟国350M€ +米国 100M€、日本30~50M€

> 日本の担当が2K-JTのみなら~30億円 (他 WFI エレキ等も含めると~50億円)

2023年~2028年に、本格的な製作

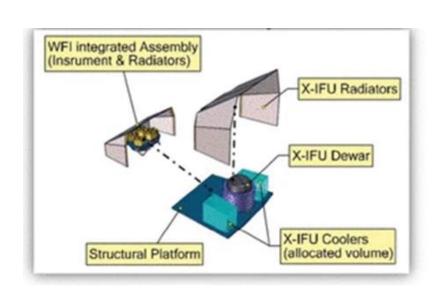
松本の個人的感想

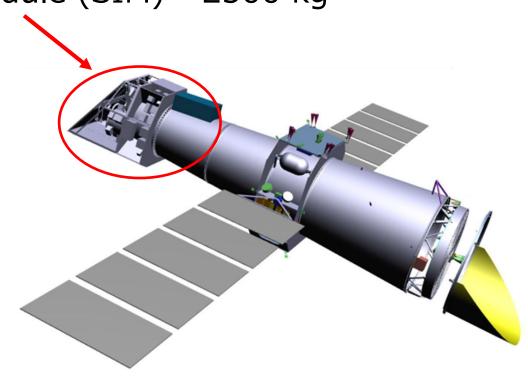

THE ATHENA MISSION

ESAの進め方に対する個人的感想

- ・縦割り行政感が強い
 - -科学者・機器開発者・計画マネジャー側(ESA) がほぼ分離。
 - サイエンスと機器開発の現状のギャップ
 - 例: X線望遠鏡の角度分解能問題
 - どれだけの人が全体を把握しているのか?
 - -例: 質量オーバー問題

望遠鏡角度分解能問題


小さなモジュールの分解能



- 望遠鏡全体で5秒角実現の目途は立っていない。
- しかしこれまで、サイエンス側は、5秒 角の要求を緩めなかった。
 - 望遠鏡は完全にESAの管轄。科学 者側に望遠鏡開発現場を良く知る 人が少なく、逆もまた然り。
 - 科学者側は、Science Study Team meetingで開発の報告を聞いてい たが、常に楽観的だった。
- Mission Adoptionが近づいてきたいま、 ようやく要求値を緩和させる可能性を 議論中

SIM質量問題

Science Instrument Module (SIM) ~2500 kg

先日 SIM review があり、質量超過が問題になった

SIM質量問題

ESA側から各consortium宛に、質量削減案が投げかけられた X-IFU 327 kg から74 kg減 WFI 307 kg から 32 kg減 JT 2K 166 kg から 13 kg現

ただし、削減案の根拠などの十分な説明はなし。 各consortiumは困惑している模様。

個人的には、全体を見渡してみんなでどうにかしよう、という 雰囲気をあまり感じない。

国内コミュニティ

- 重要なミッションだが、日本のものではない。
- ハードウェア開発で、多くの人がうるおうミッションではない。
 - ハードウェアで若手を育てる場にはなりにくい
 - 一方で、サイエンス的には日本の方向性とマッチ
- 「2030年代」をいまだに遠く感じる人も多い。
 - Athenaが採択された2014年ではそうだったが… implementation phase が目の前に来ているが。
- コミュニティの中では、重要性は理解されている。しかし、「我 が事」であるという雰囲気は十分とはいえない。
 - ひとみやXRISMと同時に走っていることも大きな要因の一つ。