光赤天連シンポジウム:2030年代の戦略的中型計画 (2022/07/12-13, zoom)

GREX-PLUSで探る宇宙の質量集積史

Credits: NASA, ESA, CSA, STScl **児玉 忠恭(東北大学)** Sl

JWST image SMACS J0723.3-7327 (z=0.39, 46*億年前*) 光赤天連シンポジウム:2030年代にどのような戦略的中型計画を推進するのか (2022/07/12-13, zoom)

GREX-PLUSで探る宇宙の質量集積史

児玉 忠恭(東北大学)

Credits: Subaru

CL0024+1652 (z=0.395)

Credits: NASA, ESA, CSA, STScl

Stephan's Quintet

Hierarchical Mass Assembly in the CDM Universe

Numerical simulations at http://4d2u.nao.ac.jp/

Small objects form first, they drag each other by gravity, merge together, and grow to more massive objects with cosmic times

GREX-PLUS 撮像サーベイ(例)

Parameter		Ultra Deep	Deep	Medium	Wide
Short wavelength (F232,F303,F397)	Area (deg ²)	1.3	40	200	2000
	Target Magnitude (AB)	27.7 (5σ)	27 (5σ)	26 (5σ)	24.5 (5σ)
Long wavelength (F520,F680,F890)	Area (deg ²)	~1	~40	~200	~500
	Target Magnitude (AB) F520/F680/F890	25.5/24/24 (5σ)	24.4/23/23 (5σ)	23/22/22 (5σ)	22.5/21/20 (5σ)

GREX-PLUS will sample rest-frame optical light including Balmer break feature and can construct stellar mass selected galaxies back to z=10 !

GREX-PLUS sensitivity to stellar mass back to z~8

Trace galaxies with stellar mass down to 1/100 of MW back to z=8-10 (96% of the cosmic time).

Mass assembly history (SF and mergers) of galaxies: Stellar mass functions back to z~10

ULTRA-VISTA (COSMOS) Muzzin et al. (2013)

100K galaxies over a 1.62 deg² field down to K_s =23.4 (AB)

Down to 1 x $10^9 M_{\odot}$ back to z~8-10 with G-REX (1hr/band)

Hunting High-z Monsters !

Massive quiescent galaxies with strong Balmer abs. lines at z~3.7

ZF-COSMOS-20115 at z=3.717, 1.5×10^{11} M_{\odot}. K(AB) = 22.4

The existence of such massive high-z monsters, and/or their old stellar populations, can put strong constraints on cosmology & galaxy formation theory.

RUBY-RUSH

Red Ultra-massive Billion-YeaR-Universe SHiners (Kodama et al., Tadaki et al.)

SWIMS MBFs (K1, K2, and K3) will capture the Balmer-break to z=5

Toshikawa et al.

Tadaki et al.

GREX-PLUS can go up to z~10 !

遠方宇宙の大質量銀河の存在は、銀河形成論に強い制限を与える

JWSTの1平方度程度のサーベイでは、z=5で10¹¹M_☉クラス、z=10で10¹⁰M_☉クラスの巨大銀河は、 存在しても稀すぎてなかなか見つからない。

Large scale structures traced by star forming galaxies (Ly α , H α)

UV-selected (LBGs) protoclusters at high-z

Table 1. Fields in the HSC-SSP S16A data release.

ADecl. (comoving Gpc)

Name	RA	Dec	Effective area [deg ²]
Wide-XMM	1 ^h 36 ^m 00 ^s -3 ^h 00 ^m 00 ^s	-6°00′00″2°00′00″	31.3
Wide-WIDE12H	$11^h 40^m 00^s 12^h 20^m 00^s$	$-2^{\circ}00'00''$ $-2^{\circ}00'00''$	17.0
Wide-GAMA15H	$14^{h}00^{m}00^{s}-15^{h}00^{m}00^{s}$	$-2^{\circ}00'00''-2^{\circ}00'00''$	39.3
Wide-HECTOMAP	$15^{h}00^{m}00^{s}-17^{h}00^{m}00^{s}$	42°00'00"-45°00'00"	12.6
Wide-VVDS	$22^{h}00^{m}00^{s}-23^{h}20^{m}00^{s}$	$-2^{\circ}00'00''-3^{\circ}00'00''$	20.7

GOLD-RUSH

Great Optically Luminous Dropout **Research Using Subaru HSC**

HSC-SSP survey has been identifying numerous proto-cluster candidates at **2<z<6** with LBG technique.

Cons: SF-limited, dust extinction

NIR (rest-frame optical) wide-field observation is essential to probe stellar-mass-selected LSSs/protoclusters at high-z

K-band and J1,J2 selected LSS at z~2

GREX-PLUS FoV = 30 arcmin = 45 Mpc (z=2) and 70 Mpc (z=5~8) in co-moving scale

Grims/NB (optional) can also trace H α emitters (SFGs) to z~7 in coordination with HSC Ly α emitters.

遠方(星形成)銀河のクラスタリングとバイアス

紫外光選択の銀河は、星形成活動やダスト吸収の影響を受けるので、質量集積史に対応する 星質量分布を直接反映していない。LAEはさらにHIの分布と共鳴散乱の影響のため、より複雑。 近赤外線(2-10µm)のサーベイによって初めて、遠方宇宙の「星質量分布」を定量化し、 クラスタリング解析や、大規模構造、原始銀河団の特定などをすることができる。

まとめ

GREX-PLUSによる2-5(10)µmの撮像サーベイにより、z=10から現在に至る、 ビルディングブロックから大質量銀河、大規模構造までの質量集積史を明らかにする

銀河スケール

*z=10に至る銀河の星質量関数を10⁹ M_☉まで構築し、銀河スケールの質量集積史を探る。 *4<z<10に至る大質量銀河の個数密度を測定し、銀河形成タイムスケールとバイアスを探る。

銀河団(LSS)スケール

*z=10に至るまで、星質量選択の大規模構造をトレースし、クラスタリング史を探る。 *4<z<10の星質量選択の原始銀河団を同定し、銀河団スケールの質量集積史を探る。 (オプション: *z=7 まで Lyα/Hα 比を使ってHI トモグラフィーを行い、ガス集積史を探る。)

]		0	
科学テーマ	ミニマムサクセス	ノミナルサクセス	エクストラサクセス
星質量集積史(銀河スケール)	z>5で大質量銀河(星質量で 5x10^10Msun以上)を複数発見 する。	3 <z<8で10^9 msunの銀河まで検出<br="">し星質量関数の初期進化史を描く。</z<8で10^9>	3 <z<8でクラスタリング解析に十 分な数の銀河を検出し、銀河ス ケールの恒星質量-ハロー質量 関係とその進化を描く。</z<8でクラスタリング解析に十
	z>5で星質量選択の原始銀河団 (10^13Msun以上)を複数発見す	z>5に星質量選択の原始銀河団 10^13Msun以上)を10個以上発見す	3 <z<8でクラスタリング解析に十 分な数の原始銀河団を検出し、 銀河団スケールの恒星質量-ハ</z<8でクラスタリング解析に十
星質量集積史(銀河団スケール)	る。	る。	ロー質量関係とその進化を描く。