# 広視野近赤外線探査で解き明かす 巨大銀河の形成

- (国立天文台・アルマプロジェクト)

2022年7月12日光赤天連シンポジウム

但木謙一



#### 



#### 



Behroozi et al. 2019, ZINA DERETSKY/NATIONAL SCIENCE FOUNDATION/WIKIMEDIA COMMONS, Katrina Kenny & University of Adelaide

#### 



|     |                  | Lyman break galaxies | Lyman bre |
|-----|------------------|----------------------|-----------|
| 発見  | Roman            | X                    |           |
|     | <b>GREX-PLUS</b> |                      |           |
| 星質量 | Roman            | ×                    |           |
|     | <b>GREX-PLUS</b> |                      |           |



「巨大銀河はいつ・どのように形成したのか?」

- ・z>7のサブミリ波銀河を発見し、特徴付ける
- ・z=5-8のサブミリ波銀河の個数密度を測定する
- ・z=5-8のサブミリ波銀河のハロー質量を測定する

Romanではできず、3-5 µmの広域探査が絶対必要





### GREX-PLUSでしか見つからない2-4 µmで赤い銀河

#### 2-4 µmで赤い銀河のダスト連続光をALMAで観測すると



### ALMA2: 観測周波数帯域が2倍以上に向上



現状:周波数設定を変えて何回も観測しなければならない

広帯域化の恩恵:

- 1. 連続光感度の向上 → quiescent galaxiesの確認

2. 一度にカバーできる赤方偏移範囲が拡大 → submillimeter bright galaxiesの分光確認

## **Required observations and expected results**



Popping et al. 2020

#### $S_{850 \mu m} > 2 mJy sources$

| redshift  | N [deg <sup>-2</sup> ] | N [200 deg |
|-----------|------------------------|------------|
| 4 < z < 5 | ~40                    | ~8000      |
| 5 < z < 6 | ~10                    | ~2000      |
| 6 < z < 7 | ~2                     | ~400       |

目標

- ・z>7のサブミリ波銀河を発見し、特徴付ける
- ・z=5-8のサブミリ波銀河の個数密度を測定する
- ・z=5-8のサブミリ波銀河のハロー質量を測定する

100平方度クラスの広域探査が必要



## Submillimeter bright galaxies at z>6





Zavala et al. 2022

#### **Dust-obscured quasars**







Behroozi et al. 2019, ZINA DERETSKY/NATIONAL SCIENCE FOUNDATION/WIKIMEDIA COMMONS, Katrina Kenny & University of Adelaide

まとめ