

せいめい望遠鏡の 現状と今後

京都大学 木野 勝

せいめい望遠鏡のスペック

望遠鏡・・・ 口径3.8m

焦点: ナスミス×2 F/6

•視野

▶ 大型装置: φ12分角(最大φ60分角)

▶ 小型装置: φ8分角

二重星 HD186605 離隔1".0

• 結像性能: FWHM ~1秒角 (光バケツ状態での運用)

• 指向精度 : rms ~10秒角

• 追尾精度 : 2~3秒角/10分

▶ オートガイダ使用時 : ~1秒角/2時間

運用中の観測装置

KOOLS-IFU

< 2019Aより運用中

TriCCS (撮像モード)< 2021Bに運用開始

2装置で定常運用

附属天文台副台長:太田

• 研究職| 木野

特定准教授(大学間連携):山中(3月末で異動) → 公募調整中

特定助教(岡山天文台特別講座):大塚

黒田(6月末で転出) → 山本(10月着任予定)

松林(5月末で転出) ・ 磯貝(10月着任予定)

研究員: **磯貝・川端・山中**(10月末で転出予定)

• 技術職員 | 仲谷 教務補佐員 | 戸田

岡山勤務の職員

望遠鏡開発/保守:岩室・栗田ほか、 運用:野上・前田ほか

国立天文台ハワイ観測所岡山分室のサポート

予算

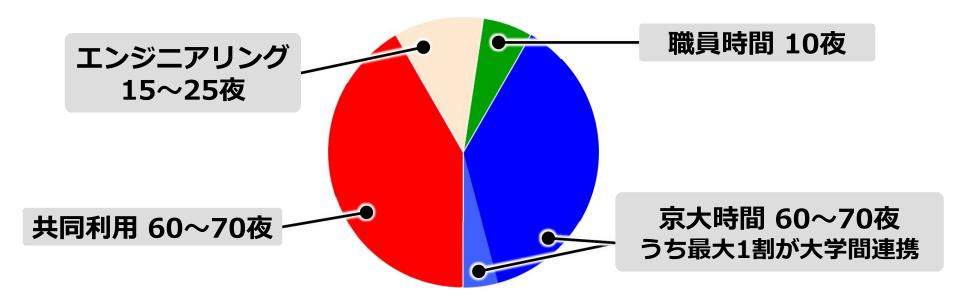
運用資金

• 京大:3375万円 + 国立天文台:3375万円

うち1450万円は大学間連携

今年度から新枠組に移行

今年度末で契約更新

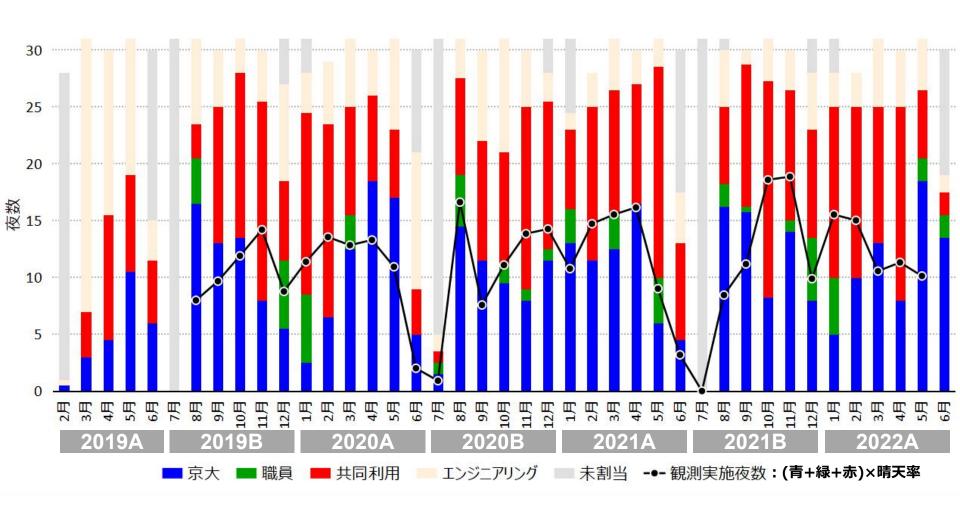

9月16日に京大・国立天文台で継続に合意

観測装置開発 科研費など

- TriCCS(可視3色高速撮像分光)
- SEICA (ExAO+コロナグラフ)
- 赤外偏光撮像
- 分割鏡制御

観測時間の配分

典型的な夜数(半期)

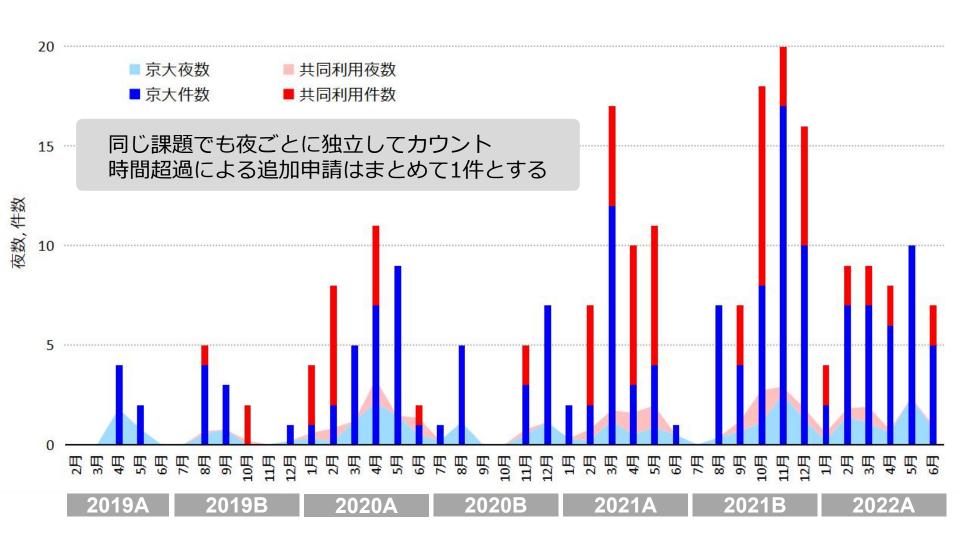


採択課題数		京大		共同利用		
		Classical	ТоО	Classical	両方	ТоО
	2021A	10	7	8	1	7
	2021B	14	12	10	1	10
	2022A	8	12	8	1	10
	2022B	16	11	9	2	11

月ごとの観測状況

梅雨季以外は高い稼働率

• 6, 7月を除けば85%(晴天率込で~40%)



ToO観測の状況

・この1年は平均で3夜に1件程度

順調に増加

• 1件あたりの観測時間は~0.15夜

観測論文など

京大時間

2021年10月~2022年8月

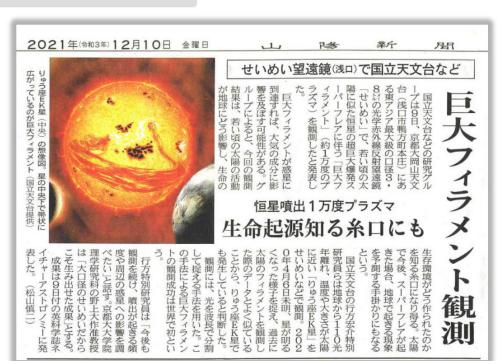
https://ui.adsabs.harvard.edu/user/libraries/wD_67svdRii2HOjSawkGKQ に集計

• 查読論文:8件

• ATelなど速報:5件

• 観測装置論文:1件

共同利用時間


2021年8月~2022年7月

• 查読論文:5件

記者発表

Namekata K. et al. "Probable detection of an eruptive filament from a superflare on a solar-type star", Nature Astronomy on Dec 9, 2021

京大・共同利用を合わせた 豊富な観測時間の成果

観測停止に至ったトラブル(2021B~)

※共同利用時間+京大時間の合算

2021年8月15~18日 KOOLS-IFU冷却トラブル

• 2021年8月 31日 主鏡 (Seg15) 接着剥離

• 2022年1月 16日 KOOLS-IFU HDD故障

• 2022年3月 8~10日 コロナ感染対応 < 無人リモート観測試験に

• 2022年4月 5日 主鏡 (Seg16) の動作不具合

• 2022年4月 27日 主鏡 (Seg18) 接着剥離

2022年7月29~8月1日 第3鏡切替モーター故障

• 2022年8月 10日 KOOLS-IFU電源故障

望遠鏡:6.5夜 + 観測装置:5.5夜 + コロナ:2夜

今後は観測装置の安定運用が課題に

解決済みの問題

- 方位軸の微小振動
- 副鏡θy軸の微小振動

制御パラメータの調整

• 主鏡制御の不安定 …………… センサ再接着・取付方法の修正

未解決の問題

- ドームスリット開閉の不具合 …… 修理待ち、ドーム内で目視操作
- 第3鏡モータの故障 ············· 修理待ち、赤ナスミスのみで運用
- 方位・高度軸の異常加速・振動 … 何もしていないのに解消
- 冬季の主鏡面の変形

主鏡接着の改善は長期課題

望遠鏡

- ・副鏡・第4鏡再蒸着による反射率の向上 大学間連携の追加配分
- オートガイダ高精度化
 - ▶ 駆動ステージの補強
- SHカメラを低温時の主鏡変形に対応
 - ▶ 1点モード測定点の位置を変更
- 校正光源をTriCCS分光モードに対応
 - 照射光学系を変更

観測環境

- ・リモート観測体制の確立
 - ▶ 無人でのリモート観測の準備

ドーム不具合のため運用開始は見合わせ

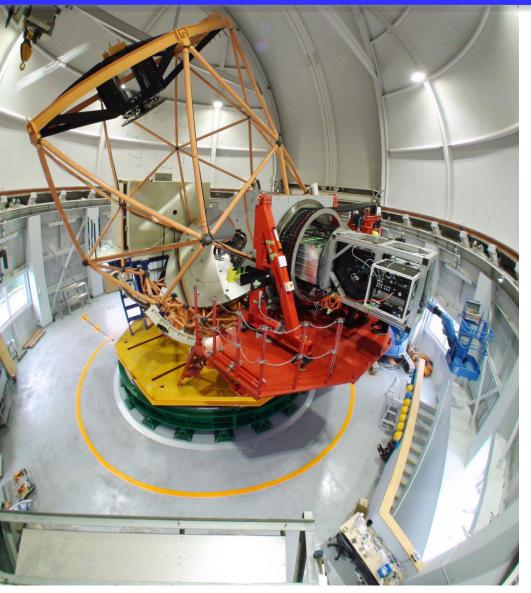
リモート観測・自動観測

リモート観測

- 京大時間:2020年4月より運用中
 - ▶ デスクトップ画面の転送・HTTPベースのUIはポート転送
- 共同利用時間:2022年1月より運用開始
 - ▶ VPN + KVM over IP による外部からの接続

安全確保のため現地に待機要員

- ➡無人でのリモート観測体制を構築
 - ▶ 人感センサの設置・監視カメラの増設


自動観測

- ・スクリプトによる半自動観測
 - ▶ 指向誤差の補正・ガイド星の選定 必要に応じて分割鏡の自動調整など

前原氏が中心に構築 試験運用中

大型装置・ファイバ装置

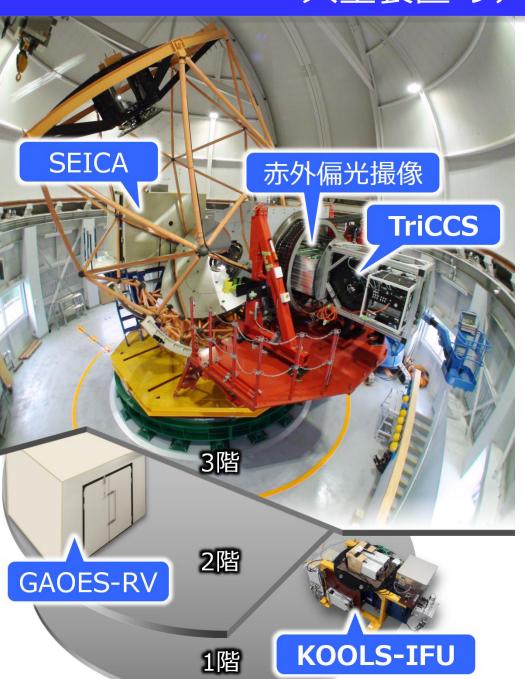
2022年7月13日

TriCCS+赤外偏光撮像器 同架試験時

赤ナスミス

- TriCCS
- 赤外偏光撮像器(予定)

青ナスミス


• SEICA (箱だけ)

ファイバ装置

- 2ステージ×3ポジション
 - ▶ KOOLS-IFU×2
 - ▶ IRS:近赤外分光×2(予定)

拡張余裕 2ヶ所

GAOES-RVは小型装置から引出

赤ナスミス

- TriCCS
- 赤外偏光撮像器(予定)

青ナスミス

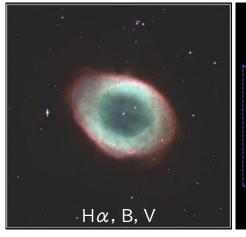
SEICA (箱だけ)

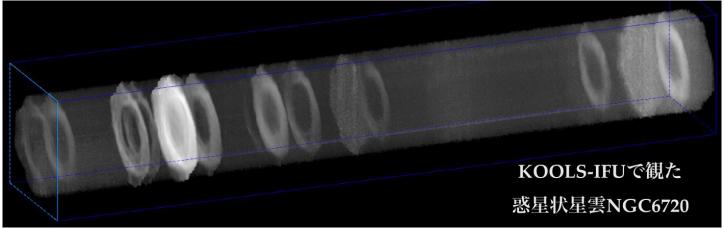
ファイバ装置

- 2ステージ×3ポジション
 - ► **KOOLS-IFU**×2
 - ▶ IRS:近赤外分光×2(予定)

拡張余裕 2ヶ所

GAOES-RVは小型装置から引出

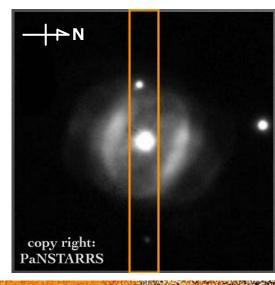

KOOLS-IFU

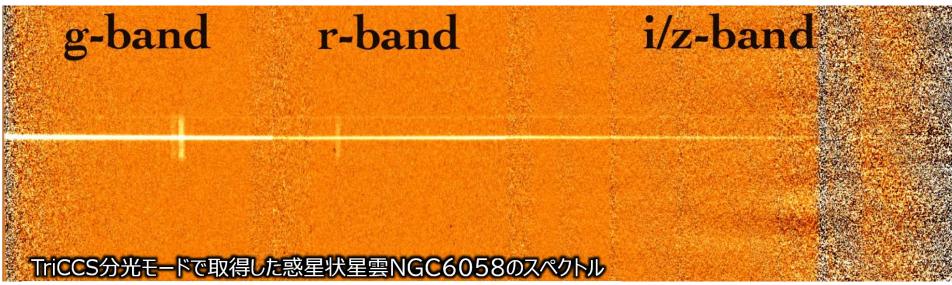

可視光「面分光」装置

- 2019年2月運用開始
- ファイバフィード型IFU
 - ▶ 110本のファイバで視野:~8×8"
- •波長域:0.4~1µm

•フレア星・超新星・銀河・AGNなど様々な天体分光で活躍中

可視3色高速撮像分光装置

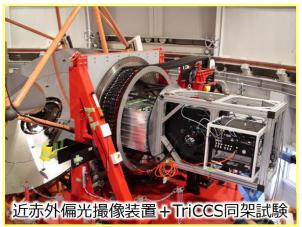

- 2021年7月 撮像モードの運用開始
- ・3バンド同時撮像
- CMOSイメージセンサの採用により最大98フレーム/秒
- 短時間変動天体、超新星などの撮像・測光で活躍中



TriCCS - 分光モード

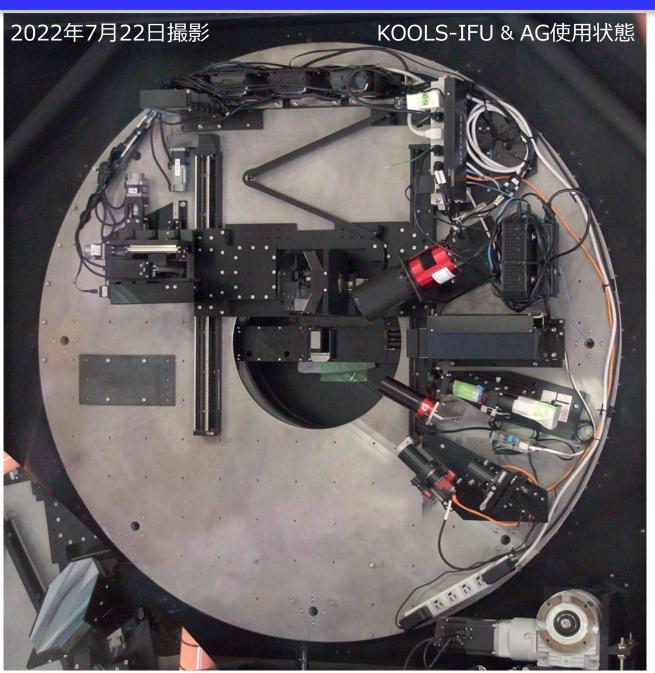
- 2022年3月 エンジニアリング・ファーストライト
- ・2023年後期より公開予定
- 0.4~1.0µmスペクトルを一度に 最大98フレーム/秒で取得可能
- ・短時間のスペクトル変動 暗い天体の分光などでの利用を期待

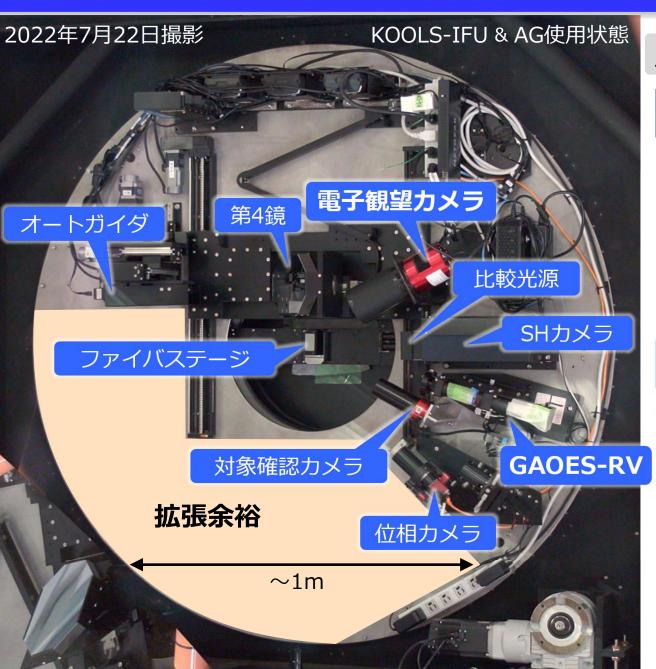
系外惑星探索用 高分散分光器


- 2022年2月 エンジニアリング・ファーストライト
- 2022年度に科学観測開始をめざす
- エシェル分光器 + ヨードセル法による視線速度決定
- 波長域: 0.51−0.59µm

開発中の装置一覧

名称	SEICA	TriCCS (分光モード)	近赤外偏光 撮像装置	GAEOS-RV	IRS	可視高分散 分光器
サイエンス	系外惑星	突発天体	星·惑星形成	系外惑星	QSO 進化	スーパーフレア
視野	4"□	1" x12'.6	2'.9□	Ф2".4	5"x8"⇔x2	Ф2".1
観測波長	Y,J,Hs	0.42-1.0μm	J & Hs	0.51-0.59µm	0.87-2.2μm	0.41-0.71μm 0.385-0.405μm
波長分解能		700		55000	4000	120000 17000
空間スケール	0".007/pix	0".350/pix	0".14/pix	Φ2".4/fiber	Φ0".9/fiber	Φ0".45/fiber
限界等級	コントラスト5-6桁 (5h)	19mag? (@r) 10m, 10σ	19mag (@J) 30s, 10σ	12mag 1h, 50σ	18mag (@J) 1h, 10σ	13mag (@r) 1h, 50σ
備考	AO+ヌル干渉計に よる高精度コロナグ ラフ	98フレーム/秒 3バンド同時	J&Hsで2偏光同時 TriCCS との同時使 用可	5分割スライサ + ヨードセル使用	スペクトル参照星との同時測光分光	可視分光器と CaHK 用中分散UV分光器 の2台構成
状況	2022年度試験観測予定	2023B 科学観測 開始予定	全体容器の筐体だけの 真空冷却試験を開始 検出器のテストの準備中 実験室でのFLを来年早く に、が理想	2022年科学観測開始予定	7~8割でほぼ停止 バイコニックミラーの 形状計測&修正研磨中 科研費次第	分光器の仕様を変更 特別推進&学術変革 領域A の申請準備中
岩室氏Webペー						





IRS用に開発中のバイコニック鏡

小型装置

小型装置

主に調整・補助用装置

新規

- GAOES-RV (前置光学系)
- ・電子観望カメラ

開発中止

HiCAS (高速測光分光)

電子観望会

- 国立天文台が主導
- ・プラネタリウム(岡山天文博物館)に投影

現状

- 多少のトラブルはあるが概ね順調に稼働中
 - ▶ 主鏡の接着は長期課題、観測装置のトラブルが相対的に増加
- 京大・共同利用ともにリモート観測も実施

望遠鏡の改良

- ・自動ToO観測、キュー観測の早期実現
- 位相カメラ・Warping Harnessによる分割鏡の高精度化

観測装置の充実

- GAOES-RVの運用開始
- TriCCS分光モードの運用開始
- 赤外偏光撮像器の搭載
- SEICAの搭載